DOI QR코드

DOI QR Code

Effects of Sulfur Substitution on Chemical Bonding Nature and Electrochemical Performance of Layered LiMn0.9Cr0.1O2-xSx

  • Lim, Seung-Tae (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry Ewha Womans University) ;
  • Park, Dae-Hoon (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry Ewha Womans University) ;
  • Lee, Sun-Hee (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry Ewha Womans University) ;
  • Hwang, Seong-Ju (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry Ewha Womans University) ;
  • Yoon, Young-Soo (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kang, Seong-Gu (Department of Chemical Engineering, Hoseo University)
  • Published : 2006.09.20

Abstract

Sulfur-substituted $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$ $(0\;\leq\;x\;\leq\;0.1)$ layered oxides have been prepared by solid state reaction under inert atmosphere. From powder X-ray diffraction analyses, all the present lithium manganates were found to be crystallized with monoclinic-layered structure. Electrochemical measurements clearly demonstrated that, in comparison with the pristine $LiMn_{0.9}Cr_{0.1}O_2$, the sulfur-substituted derivatives exhibit smaller discharge capacities for the entire cycle range but the recovery of discharge capacity after the initial several cycles becomes faster upon sulfur substitution. The effect of the sulfur substitution on the chemical bonding nature of $LiMn_{0.9}Cr_{0.1}O_{2-x}S_x$has been investigated using X-ray absorption spectroscopic (XAS) analyses at Mn and Cr K-edges. According to Mn K-edge XAS results, the trivalent oxidation state of manganese ion remains unchanged before and after the substitution whereas the local structure around manganese ions becomes more distorted with increasing the substitution rate of sulfur. On the other hand, the replacement of oxygen with sulfur has negligible influence on the local atomic arrangement around chromium ions, which is surely due to the high octahedral stabilization energy of $Cr^{+III} $ ions. Based on the present experimental findings, we have suggested that the decrease of discharge capacity upon sulfur substitution is ascribable to the enhanced structural distortion of $MnO_6$ octahedra and/or to the formation of covalent Li-S bonds, and the accompanying improvement of cyclability would be related to the depression of Mn migration and/or to the pillaring effect of larger sulfur anion.

Keywords

References

  1. Nagaura, T.; Tazawa, K. Prog. Batteries Solar Cells 1990, 9, 20
  2. Thackeray, M. M. Prog. Solid State Chem. 1997, 25, 1 https://doi.org/10.1016/S0079-6786(97)81003-5
  3. Armstrong, A. R.; Gitzendanner, R.; Robertson, A. D.; Bruce, P. G. Nature 1998, 1833
  4. Hwang, S.-J.; Park, H. S.; Choy, J.-H.; Campet, G. Chem. Mater. 2000, 12, 1818 https://doi.org/10.1021/cm9905491
  5. Vitins, G.; West, K. J. Electrochem. Soc. 1997, 144, 2587 https://doi.org/10.1149/1.1837869
  6. Hwang, S.-J.; Park, H. S.; Choy, J.-H.; Campet, G. J. Phys. Chem. B 2000, 104, 7612 https://doi.org/10.1021/jp0016176
  7. Armstrong, A. R.; Gitzendanner, R.; Robertson, A. D.; Bruce, P. G. Chem. Commun. 1998, 1833
  8. Park, Y. J.; Hong, Y.-S.; Wu, X.; Kim, M. G.; Ryu K. S.; Chang, S. H. Bull. Kor. Chem. Soc. 2004, 511
  9. Park, S.-H.; Park, K. S.; Sun, Y. K.; Nahm, K. S. J. Electrochem. Soc. 2000, 147, 2116 https://doi.org/10.1149/1.1393494
  10. Sun, Y. K.; Park, G.-S.; Lee, Y.-S.; Yoashio, M.; Nahm, K. S. J. Electrochem. Soc. 2001, 148, A994 https://doi.org/10.1149/1.1391270
  11. Park, S.-H.; Lee, Y.-S.; Sun, Y. K. Electrochem. Commun. 2003, 5, 124 https://doi.org/10.1016/S1388-2481(03)00005-5
  12. Teo, B. K. EXAFS: Basic Principles and Data Analysis; Springer-Verlag: Berlin, 1986
  13. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751 https://doi.org/10.1107/S0567739476001551
  14. Treuil, N.; Labrugere, C.; Menetrier, M.; Portier, J.; Campet, G.; Deshayes, A.; Frison, J. C.; Hwang, S. J.; Song, S. W.; Choy, J. H. J. Phys. Chem. B 1999, 103, 2100 https://doi.org/10.1021/jp984316t
  15. Hwang, S.-J.; Kwon, C. W.; Portier, J.; Campet, G.; Park, H. S.; Choy, J.-H.; Huong, P. V.; Yoshimura, M.; Kakihana, M. J. Phys. Chem. B 2002, 106, 4053 https://doi.org/10.1021/jp012704g
  16. Hwang, S.-J.; Choy, J.-H. J. Phys. Chem. B 2003, 107, 5791 https://doi.org/10.1021/jp034049d
  17. Huheey, J. H.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity; HarperCollins: New York, 1993; p 171

Cited by

  1. Soft Chemical Dehydration Route to Carbon Coating of Metal Oxides: Its Application for Spinel Lithium Manganate vol.111, pp.30, 2007, https://doi.org/10.1021/jp0725230
  2. Preparation and electrochemical properties of indium- and sulfur-doped LiMnO2 with orthorhombic structure as cathode materials vol.189, pp.1, 2006, https://doi.org/10.1016/j.jpowsour.2008.07.069