DOI QR코드

DOI QR Code

Characterization of AC/TiO2 Composite Prepared with Pitch Binder and Their Photocatalytic Activity

  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Bae, Jang-Soon (Department of Industrial Chemistry, Dankook University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2006.09.20

Abstract

In this study, we have prepared pitch binded AC (activated carbon)/$AC/TiO_2$ composites photocatalysts through carbon tetrachloride solvent method. The developed samples were characterized with surface properties, structural crystallinity between AC and $AC/TiO_2$, elemental identification and photocatalytic activity. The results of the textural surface properties demonstrate that there are slight increases in the BET surface area and adsorbed volume from adsorption isotherm of composite samples with increasing of the amount of AC. The SEM results present to the characterization of porous texture on the pitch/AC/$AC/TiO_2$ composites and homogenous compositions in the particle for all the materials used. From XRD data, a weak and broad carbon peak of graphene remained rutile peaks kept with anatase structure were observed in the X-ray diffraction patterns for the pitch/AC/$AC/TiO_2$ composites. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of the pitch/AC/$AC/TiO_2$ composites between relative concentration ($c/c_o$) of MB and UV irradiation time could be attributed to the both effects between photocatalysis of the supported $AC/TiO_2$ and adsorptivity of the two kinds of carbons.

Keywords

References

  1. Oh, W. C.; Bae, J. S.; Ko, Y. S. Carbon Science 2006, 7, 105
  2. Oh, W. C.; Lee, H. J.; Bae, J. S. J. Korean Ind. Eng. Chem. 2004, 15, 434
  3. Oh, W. C.; Park, C. S.; Lim, C. S.; Lee, Y. S. J. Ceramic Processing Research 2006, 7, 37
  4. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95, 735 https://doi.org/10.1021/cr00035a013
  5. Motos, J.; Laine, J.; Hermann, J. M. J. Catal. 2001, 200, 10 https://doi.org/10.1006/jcat.2001.3191
  6. Maldnano-Hodar, F. J.; Moreno-Castilla, C.; Rivera-Utrilla, J. Appl. Catal. A 2000, 203, 151 https://doi.org/10.1016/S0926-860X(00)00480-4
  7. Torimto, T.; Ito, S.; Kuwabata, S.; Yoneyama, H. Environ. Sci. Technol. 1996, 30, 1275 https://doi.org/10.1021/es950483k
  8. Motos, J.; Laine, J.; Hermann, J. M. Carbon 1999, 37, 1870 https://doi.org/10.1016/S0008-6223(99)00198-0
  9. McEnaney, B.; Mays, T. J.; Rouquerol, J.; Rodriguez-Reinoso, F.; Sing, K. S. W.; Unger, K. K. Characterization of Porous Solids IV; The Royal Society of Chemistry: 1997; p 604
  10. Graetzel, M.; Frank, A. J. J. Phys. Chem. 1982, 86, 2964 https://doi.org/10.1021/j100212a031
  11. Zhang, X.; Zhou, M.; Lei, L. Carbon 2006, 44, 325 https://doi.org/10.1016/j.carbon.2005.07.033
  12. Oh, W. C.; Park, C. S.; Park, C. Y.; Jung, A. R.; Chen, M. L. Conference Proceeding of Korea Carbon Society 2006; p 94
  13. Zhang, X.; Zhau, M.; Lei, L. Carbon 2005, 43, 1700 https://doi.org/10.1016/j.carbon.2005.02.013
  14. Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry, 2nd Ed.; John Wily and Sons: 2002; p 224

Cited by

  1. Composite under Visible Light vol.2010, pp.1687-529X, 2010, https://doi.org/10.1155/2010/264831
  2. Photocatalyst and Their Enhanced Photocatalytic Activities under UV and Visible Light vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1657
  3. Visible-Light Photocatalytic Properties of W18O49/TiO2 and WO3/TiO2 Heterocomposites vol.142, pp.12, 2012, https://doi.org/10.1007/s10562-012-0924-z
  4. Photonic Activity for MB Solution of Metal Oxide/CNT Catalysts Derived from Different Organometallic Compounds vol.20, pp.2, 2012, https://doi.org/10.1080/1536383X.2010.533302
  5. by the Sol-Gel Method and its Recyclic Photodegradation of Rhodamine B vol.50, pp.4, 2013, https://doi.org/10.4191/kcers.2013.50.4.251
  6. Composite Catalysts for the Photocatalytic Degradation of MO under Visible Light vol.50, pp.4, 2013, https://doi.org/10.4191/kcers.2013.50.4.269
  7. for Efficient Visible-Light Photocatalysis vol.35, pp.3, 2014, https://doi.org/10.5012/bkcs.2014.35.3.913
  8. Water bath synthesis and enhanced photocatalytic performances of urchin-like micro/nanostructured α-FeOOH vol.30, pp.10, 2015, https://doi.org/10.1557/jmr.2015.103
  9. Photodegradation of formaldehyde by activated carbon loading TiO2 synthesized via microwave irradiation vol.32, pp.7, 2015, https://doi.org/10.1007/s11814-014-0338-2
  10. nanocomposites with an improved photocatalytic effect vol.25, pp.12, 2017, https://doi.org/10.1080/1536383X.2017.1344648
  11. Synthesis and highly visible-induced photocatalytic activity of CNT-CdSe composite for methylene blue solution vol.6, pp.1, 2011, https://doi.org/10.1186/1556-276X-6-398
  12. Comparative Analysis of the Physical Properties and Photocatalytic Effects for C/TiO2 Complexes Derived from Titanium n-butoxide vol.12, pp.5, 2006, https://doi.org/10.4491/eer.2007.12.5.218
  13. A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1951
  14. Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts vol.28, pp.4, 2006, https://doi.org/10.5012/bkcs.2007.28.4.581
  15. Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.159
  16. Photocatalytic Behavior of WO3/TiO2 in Decomposing Volatile Aldehydes vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.494
  17. Toxic Gas Removal Behaviors of Porous Carbons in the Presence of Ag/Ni Bimetallic Clusters vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.782
  18. Photocatalytic Oxidation for Organic Dye using Phenol Resin-based Carbon-titania Composites vol.45, pp.1, 2006, https://doi.org/10.4191/kcers.2008.45.1.036
  19. Synthesis and Characterization of Fe-containing AC/TiO2 Composites and Their Photodegradation Effect for the Piggery Waste vol.13, pp.2, 2006, https://doi.org/10.4491/eer.2008.13.2.085
  20. Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects vol.45, pp.4, 2006, https://doi.org/10.4191/kcers.2008.45.4.196
  21. Effect of Fe Contents in Fe-AC/Tio2 Composites on Photodegradation Behaviors of Methylene Blue vol.45, pp.6, 2006, https://doi.org/10.4191/kcers.2008.45.6.324
  22. Synthesis and Characterization of CNT / TiO2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation vol.18, pp.11, 2006, https://doi.org/10.3740/mrsk.2008.18.11.583
  23. Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water vol.45, pp.11, 2008, https://doi.org/10.4191/kcers.2008.45.1.667
  24. Characterization of CNT/TiO2 Electrode Prepared Through Impregnation with TNB and Their Photoelectrocatalytic Properties vol.14, pp.1, 2006, https://doi.org/10.4491/eer.2009.14.1.032
  25. High Photocatalytic Activity of Gd2O2S:Tb Modified Titanium Dioxide Films vol.30, pp.3, 2006, https://doi.org/10.5012/bkcs.2009.30.3.675
  26. Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue vol.30, pp.8, 2009, https://doi.org/10.5012/bkcs.2009.30.8.1798
  27. Fabrication of Ni-AC/TiO2Composites and their Photocatalytic Activity for Degradation of Methylene Blue vol.46, pp.1, 2006, https://doi.org/10.4191/kcers.2009.46.1.001
  28. Fabrication of Zn-treated ACF/TiO2 Composites and Their Photocataytic Activity for Degradation of Methylene Blue vol.19, pp.3, 2006, https://doi.org/10.3740/mrsk.2009.19.3.142
  29. Photoelectrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/TiO2 Electrode vol.46, pp.3, 2006, https://doi.org/10.4191/kcers.2009.46.3.263
  30. Photocatalytic Activity of EG-TiO2 Composite for Various Dye Solutions Under UV Light and Visible Light vol.19, pp.10, 2006, https://doi.org/10.3740/mrsk.2009.19.10.555
  31. Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst vol.30, pp.11, 2006, https://doi.org/10.5012/bkcs.2009.30.11.2613
  32. Characterization and photonic properties for the Pt-fullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60 vol.15, pp.6, 2006, https://doi.org/10.1016/j.jiec.2009.09.001
  33. Preparation of Co-ACFs/TiO2 composites and its photodegradation of methylene blue vol.10, pp.11, 2006, https://doi.org/10.5762/kais.2009.10.11.3031
  34. Photocatalytic Degradation of Methylene Blue by ACF/TiO2 and ACF/ZnO Composites under UV Light vol.20, pp.1, 2010, https://doi.org/10.3740/mrsk.2010.20.1.031
  35. Fabrication and Physicochemical Properties of Carbon/Titania/Bentonite Monolith for Architecture vol.20, pp.3, 2006, https://doi.org/10.3740/mrsk.2010.20.3.167
  36. Characterization and Photonic Effect of Novel Ag-CNT/TiO2 Composites and their Bactericidal Activities vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1981
  37. Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst vol.20, pp.7, 2006, https://doi.org/10.3740/mrsk.2010.20.7.345
  38. Preparation and Catalytic Properties of Pt/CNT/TiO2 Composite vol.47, pp.4, 2010, https://doi.org/10.4191/kcers.2010.47.4.269
  39. Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes vol.20, pp.8, 2006, https://doi.org/10.3740/mrsk.2010.20.8.429
  40. Photonic Aspects of MB Degradation on Fe-carbon/TiO2 Composites under UV Light Irradiation vol.47, pp.5, 2006, https://doi.org/10.4191/kcers.2010.47.5.433
  41. The Photodegradation Effect of Organic Dye for Metal Oxide (Cr2O3, MgO and V2O3) Treated CNT/TiO2 Composites vol.32, pp.3, 2006, https://doi.org/10.5012/bkcs.2011.32.3.815
  42. Synthesis of Spherical Carbons Containing Titania and Their Physicochemical and Photochemical Properties vol.48, pp.1, 2006, https://doi.org/10.4191/kcers.2011.48.1.006
  43. Comparison of catalytic activities for photocatalytic and sonocatalytic degradation of methylene blue in present of anatase TiO2–CNT catalysts vol.18, pp.3, 2006, https://doi.org/10.1016/j.ultsonch.2010.11.008
  44. Photocatalytic Degradation of Methylene Blue by Pd/MWCNT/TiO2 under UV and Visible Light Irradiation vol.49, pp.6, 2006, https://doi.org/10.4191/kcers.2012.49.6.511
  45. Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B vol.20, pp.1, 2006, https://doi.org/10.1016/j.ultsonch.2012.08.005
  46. Anchoring of Silver Nanoparticles onto Functionalized Multiwall-carbon Nanotube and Evaluation of Antibacterial Effects vol.23, pp.6, 2015, https://doi.org/10.1080/1536383x.2013.868805
  47. Photocatalytic Activity of Nitrogen-Doped Mesoporous Carbon Spheres Supporting Anatase TiO2 Prepared by a Simple Two-Step Solvothermal Approach vol.10, pp.5, 2015, https://doi.org/10.1142/s1793292015500769
  48. A Study on Toxic Acidic Vapor Removal Behaviors of Continuously Nanostructured Copper/Nickel-Coated Nanoporous Carbons vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/546720
  49. Carbon Monoliths by Assembling Carbon Spheres for Gas Adsorption vol.58, pp.12, 2006, https://doi.org/10.1021/acs.iecr.8b04891
  50. Photocatalytic degradation of methylene blue using three-dimensional porous graphene-titania microparticles under UV light vol.37, pp.6, 2006, https://doi.org/10.1007/s11814-020-0512-7