Post Feeding Trypsin Activity in the Digestive Organs and the Gastric Evacuation Rate of Litopenaeus vannamei (Boone)

먹이섭취 후 흰다리새우, Litopenaeus vannamei (Boone) 소화기관의 trypsin 활성 및 배설률

  • Kim, Su-Kyoung (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Kim, Dae-Hyun (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Kim, Bong-Rae (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Kim, Jong-Seek (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Cho, Yeong-Rok (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Seo, Hyung-Cheol (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Kim, Jong-Hwa (Crustacean Research Center, Notional Fisheries Research and Development Institute) ;
  • Han, Chang-Hee (Dong Eui University) ;
  • Jang, In-Kwon (West Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 김수경 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 김대현 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 김봉래 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 김종식 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 조영록 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 서형철 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 김종화 (국립수산과학원 서해수산연구소 갑각류연구센터) ;
  • 한창희 (동의대학교) ;
  • 장인권 (국립수산과학원 서해수산연구소)
  • Published : 2006.02.25

Abstract

The tryptic enzyme activities from hepatopancreas, foregut, midgut and feces were examined to optimize the feeding method in whiteleg shrimp, Litopenaeus vannamei. The highest tryptic enzyme activity was found in hepatopancreas. The enzyme activities of hepatopancreas were 4 times higher than those of foregut per mg dry weight at 30 minutes feeding. Post feeding period, the activities of hepatopancreas increased continuously up to 30 hours after feeding. Trypsin activities of foregut showed about 3 times higher than did those of midgut. Average activity of foregut reached the pick with $303{\pm}68\;(mean{\pm}SE)$ nmol/mg/min at two hours after feeding and kept the activity up to 4 hours after feeding and thereafter the activity decreased. Average tryptic enzyme activity of midgut increased to $96{\pm}26nmol/mg/min$ up to two hours after feeding and it decreased to $52{\pm}17nmol/mg/min$ at five hours after feeding eventhough the gastric evacuation rate was still 50% by then. Foregut clearance occurred in 30 minutes after feeding and midgut weight increased up to 2 hours after feeding. Also we found that the maximal food ingestion in foregut was equivalent to the average 0.3% of its body weight by 30 minutes after feeding. Up to 5 hours after feeding, the weight ratio of midgut to body weight reduced, but still the weight ratio of foregut to body weight kept the similarity until then. These indicated that the tryptic enzyme activity and the clearance rate are different among the digestive organs and between forgot and midgut during the post feeding period in whiteleg shrimp.

흰다리새우 양식기법의 최적화를 위하여 소화기간 동안의 간췌장, 전장 그리고 중장에서의 trypsin의 활성변화를 조사하였다. 체중에 대한 전장, 중장의 무게 그리고 그 무게 합의 비율은 섭취된 먹이의 이동 및 소화과정을 나타내는 지표로서 공급량과 잔류량에 의한 먹이섭취량을 측정하는 것 보다 더 정확한 지표로서 사용 가능하였다. 평균적으로 치대 먹이섭취량은 전장에서 먹이섭취 후 30분 이내에 체중에 0.3%로 나타났다. 또한 30분 이후부터 전장이 비워지기 시작되었으며 중장의 무게가 최대에 이르는 시각은 2시간째였다. $3{\sim}5$시간 후에는 먹이가 배설됨으로 인하여 중장의 체중에 대한 무게비가 감소하였으나 전장에서는 비교적 같은 비율을 유지하였다. 먹이섭취에 의한 trypsin활성변화는 간췌장에서 가장 커서 전장에서의 활성변화에 비하여 약 3배로 나타났다. 소화시간이 지날수록 간췌장에서의 trypsin 활성은 지속적으로 증가하였다. 전장에서의 trypsin 효소의 활성은 중장보다 약 $2{\sim}3$배정도 높았다 먹이섭취 후 2시간이 지났을 때 trypsin 활성은 303 n mol/mg/min였고, 4시간까지 이 활성이 유지($277{\sim}306$ n mol/mg/min)되었으며, 그 후에는 점차 감소하였다. 중장에서는 typsin 활성이 먹이를 섭취하여 한 시간이 지나면서 $65{\pm}29$ (SE) n mol/mg/min로 증가하였다. 그 이후에는 $80{\sim}97$ n mol/mg/min의 범위를 나타내었으며, 5시간이 경과하였을 때 $52{\pm}17$ (SE) n mol/mg/min로 감소하였고 소화관내에 잔류하고 있는 먹이 량은 최대 섭취량의 50%로 나타났다.

Keywords

References

  1. Al-Mohanna, S. Y. and J. A. Nott, 1987. R-cell and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Marine Biology, 95, 129-137 https://doi.org/10.1007/BF00447494
  2. Cockcroft, A. and A. McLachlan, 1986. Food and feeding habits of the surf zone penaeid prawn Macropetasma africanus (Balss). Marine Ecology, 7, 345-357 https://doi.org/10.1111/j.1439-0485.1986.tb00169.x
  3. Cordova-Murueta, J. H., F. L. Garcia-Carreno, de los A. Maria and del T. Navarrete, 2003. Digestive enzymes present in crustacean feces as a tool for biochemical, physiological and ecological studies. J. of Exp. Mar. Biol. and Ecol., 297, 43-56 https://doi.org/10.1016/S0022-0981(03)00355-1
  4. Cuzon, G., C. Rosas, G. Gaxiola, G. Taboada and A. Van Wormhoudt, 2000. Utilization of carbohydrates by shrimp. In: V Simposium Internacional de Nutricion Acuicola (ed. by L.E. Cruz-Suarez, D. Ricque-Marie, M. Tapia-Salazar, M. A. Olvera- Novoa and R. Civera-Cerecedo), 328-339
  5. Dall, W., 1968. Food and feeding of some Australian penaeid shrimps. FAO Fish. Rep., 57, 251-258
  6. Galgani, M. L., Y. Benyamin and H. J. Ceccaldi, 1984. Identification of digestive proteinases of Penaeus kerathurus (Forskal): A comparison with Penaeus japonicus. Comp. Biochem. Physiol., 78B, 355-361
  7. García-Carreno, F. L., 1992. The digestive proteases of langostilla (Pleuroncodes planipes, Decapoda): their partial characterization, and the effect of feed on their composition. Comp. Biochem. Physiol., 103B, 575-578
  8. Heyraud, M., 1979. Food ingestion and digestive transit time in euphausiid Meganyctiphanes norvegica as a function of animal size. J. Plankton Res., 1, 301-311 https://doi.org/10.1093/plankt/1.4.301
  9. Hill, B. J. and T. J. Wassenberg, 1992. Preferences and amount of food eaten by the prawn Penaeus esculentus over the moult cycle. Aust. J. Mar. Freshwater Res., 43, 727-735 https://doi.org/10.1071/MF9920727
  10. Hjelmeland, K., B. H. Pedersen and E. M. Nilssen, 1988. Trypsin content in intestines of herring Larvae, Clupea harengus, ingesting inert polystyrene spheres or live crustacea pry. Mar. Biol., 98, 331-335 https://doi.org/10.1007/BF00391108
  11. Holland, K. N. and R. J. Borski, 1993. A palatability bioassay for determining ingestive stimuli in the marine shrimp Penaeus vannamei. Aquaculture, 109, 153-164 https://doi.org/10.1016/0044-8486(93)90212-H
  12. Jiang, S. T., M. W. Moody and H. C. Chen, 1991. Purification and characterization of proteases from digestive track of grass shrimp (Penaeus monodon). J. Food Sci., 56, 322-326 https://doi.org/10.1111/j.1365-2621.1991.tb05271.x
  13. Kurmaly, K., D. A. Jones and A. B. Yule, 1990. Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar. Biol., 106, 181-190 https://doi.org/10.1007/BF01314799
  14. Kureshy, N. and D. A. Davis, 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture, 204, 125-143 https://doi.org/10.1016/S0044-8486(01)00649-4
  15. Le Moullac, G., B. Klein, D. Sellos and A. Van Wormhoudt, 1996. Adaptation of trypsin, chymotrypsin and a-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J. Exp. Mar. Biol. Ecol., 208, 107-125
  16. Lee, P. G., 1984. Digestive enzymes of Penaeid shrimp: a descriptive and quantitative examination of the relationships of enzyme activity with growth, age and diet. Ph.D. Thesis, Texas A&M University, USA, 148 pp
  17. Loya-Javellana, G. N., D.R. Fielder and M. J. Thorne, 1995, Foregut evacuation, return of appetite and gastric fluid secretion in the tropical freshwater crayfish, Cherax quadricarinatus. Aquaculture, 134, 295-306 https://doi.org/10.1016/0044-8486(95)00050-C
  18. Marchant, R. and H. B. N. Hynes, 1981. Field estimates of feeding rate for Gammarus pseudolimneus (Crustacea: Amphipoda) in the Credit River, Ontario. Freshwater Biol., 11, 27-36 https://doi.org/10.1111/j.1365-2427.1981.tb01240.x
  19. Marte, C. L., 1980. The food and feeding habit of Penaeus monodon Fabricius collected from Makato River, Aklan, Philippines (Decapoda, Natantia). Crustacean, 38, 225-236 https://doi.org/10.1163/156854080X00139
  20. Mills, B. J. and P. I. McCloud, 1983. Effects of stocking and feeding rates on experimental pond production of the crayfish Cherax destructor Clark (Decapoda: Parastacidae). Aquaculture, 34, 51-72 https://doi.org/10.1016/0044-8486(83)90291-0
  21. Moore, J. W., 1977. Some aspects of the feeding biology of benthic invertebrates. Hydrobiologica, 53, 139-146 https://doi.org/10.1007/BF00029292
  22. Murtaugh, P. A., 1984. Variable gut residence time: problems in inferring feeding rate from stomach fullness of a mysid crustacean. Can. J. Fish. Aquat. Sci., 41, 1287-1293 https://doi.org/10.1139/f84-157
  23. Murtaugh, P. A., 1985. The influence of food concentration and feeding rate on the gut residence time of Daphnia. J. Plankton Re., 7, 45-420
  24. Nunes, A. J. P., S. Goddard and T. C. V. Gesteira, 1996. Feeding activity patterns of the Southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil. Aquaculture, 144, 371-386 https://doi.org/10.1016/0044-8486(96)01297-5
  25. Nunes, A. J. P. and G. J. Parsons, 1999. Feeding levels of the Southern brown shrimp Penaeus subtilis in response to food dispersal. J. World Aquacult. Soc., 30, 331-348 https://doi.org/10.1111/j.1749-7345.1999.tb00684.x
  26. Nunes, A. J. P. and G. J. Parsons, 2000. Size-related feeding and gastric evacuation measurements for the Southern brown shrimp Penaeus subtilis. Aquaculture, 187, 133-151 https://doi.org/10.1016/S0044-8486(99)00386-5
  27. Reymond, H. and J. P. Lagardere, 1990. Feeding rhythms and food of Penaeus japonicus Bate (Crustacea, Penaeidae) in salt water ponds: role of halophilic entomofauna. Aquaculture, 81, 125-143
  28. Sedgwick, R. W., 1979. Effect of ration size and feeding frequency on the growth and food conversion of juvenile Penaeus merguiensis de Man. Aquaculture, 16, 7-30 https://doi.org/10.1016/0044-8486(79)90168-6
  29. Sick, L. V. and G. J. Baptist, 1973. Effects of selected physical and nutritional factors on rates of pelleted diet ingestion by postlarval penaeid shrimp. J. Elisha Mitchell Sci. Soc., 89, 161-165
  30. Sick, L. V., D. B. White and G. J. Baptist, 1973. The effect of duration of feeding, amount of food, light intensity and animal size on rate of ingestion of pelleted food by juvenile penaeid shrimp. Prog. Fish-Cult., 35, 22-26 https://doi.org/10.1577/1548-8659(1973)35[22:TEODOF]2.0.CO;2
  31. Ueberschaer, B., B. H. Pedersen and K. Hjelmeland, 1992. Quantification of trypsin with radioimmunoassay in herring larvae (Clupea harengus) compared with a highly sensitive fluorescence technique to determine tryptic enzyme activity. Mar. Biol., 13, 469-473
  32. Ueberschaer, B., 2000. Die Trypsinaktivitaet als biochemischer Indikator zur Bestimmung des Ernaehrungszustandes sowie der Fressaktivitaet von Fischlarven und seine Anwendung in Feldstudien. PhD Thesis, University of Hamburg. Weissensee Verlag, Berlin 2000, ISBN 3-934479-11-1, p 201
  33. Velasco, M., A. L. Lawrence and F. L. Castille, 1999. Effect of variations in daily feeding frequency and ration size on growth of shrimp, Litopenaeus vannamei (Boone), in zero-water exchange culture tanks, Aquaculture, 179, 14-148