Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Lee, Yun-Kyung (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Lee, Eun-Hee (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University) ;
  • Park, Jeong-Ju (Division of Molecular Life Sciences, Pohang University of Sciecne and Technology) ;
  • Chung, Sung-Kee (Division of Molecular Life Sciences, Pohang University of Sciecne and Technology) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University)
  • Published : 2006.08.01

Abstract

We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

Keywords

References

  1. Alfonso, A., De la Rosa, L. A., Vieytes, M. R., and Botana, L. M., Dimethylsphingosine increases cytosolic calcium and intracellular pH in human T lymphocytes. Biochem. Pharmacol., 65, 465-478 (2003) https://doi.org/10.1016/S0006-2952(02)01519-8
  2. De Jonghe, S., Van Overmeire, I., Poulton, S., Hendrix, C., Busson, R., Van Calenbergh, S., De Keukeleire, D., Spiegel, S., and Herdewijn, P., Structure-activity relationship of shortchain sphingoid bases as inhibitors of sphingosine kinase. Bioorg. Med. Chem. Lett., 9, 3175-3180 (1999) https://doi.org/10.1016/S0960-894X(99)00554-5
  3. Edsall, L. C., Van Brocklyn, J. R., Cuvillier, O., Kleuser, B., and Spiegel, S., N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry, 37, 12892-12898 (1998) https://doi.org/10.1021/bi980744d
  4. Endo, K., Igarashi, Y., Nisar, M., Zhou, Q. H., and Hakomori, S., Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res., 51, 1613- 1618 (1991)
  5. Hannun, Y. A. and Bell, R. M., Lysosphingolipids inhibit protein kinase C: implications for the sphingolipidoses. Science, 235, 670-674 (1987) https://doi.org/10.1126/science.3101176
  6. Himmel, H. M., Meyer zu Heringdorf, D., Windorfer, B., van Koppen, C. J., Ravens, U., and Jakobs, K. H., Guanine nucleotide-sensitive inhibition of L-type $Ca^{2+}$ current by lysosphingolipids in RINm5F insulinoma cells. Mol. Pharmacol., 53, 862-869 (1998)
  7. Igarashi, Y. and Hakomori, S., Enzymatic synthesis of N,Ndimethyl- sphingosine: demonstration of the sphingosine: Nmethyltransferase in mouse brain. Biochem. Biophys. Res. Commun., 164, 1411-1416 (1989) https://doi.org/10.1016/0006-291X(89)91827-5
  8. Igarashi, Y., Hakomori, S., Toyokuni, T., Dean, B., Fujita, S., Sugimoto, M., Ogawa, T., el-Ghendy, K., and Racker, E., Effect of chemically well-defined sphingosine and its Nmethyl derivatives on protein kinase C and src kinase activities. Biochemistry, 28, 6796-6800 (1989) https://doi.org/10.1021/bi00443a002
  9. Izumi, H., Torigoe, T., Ishiguchi, H., Uramoto, H., Yoshida, Y., Tanabe, M., Ise, T., Murakami, T., Yoshida, T., Nomoto, M., and Kohno, K., Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat. Rev., 29, 541-549 (2003) https://doi.org/10.1016/S0305-7372(03)00106-3
  10. James-Kracke, M. R., Quick and accurate method to convert BCECF fluorescence to pHi: calibration in three different types of cell preparations. J. Cell. Physiol., 151, 596-603 (1992) https://doi.org/10.1002/jcp.1041510320
  11. Kimura, S., Kawa, S., Ruan, F., Nisar, M., Sadahira, Y., Hakomori, S., and Igarashi, Y., Effect of sphingosine and its N-methyl derivatives on oxidative burst, phagokinetic activity, and trans-endothelial migration of human neutrophils. Biochem. Pharmacol., 44, 1585-1595 (1992) https://doi.org/10.1016/0006-2952(92)90476-Y
  12. Lee, E. H., Lee, Y. K., Im, Y. J., Kim, J. H., Okajima, F., and Im, D. S., Dimethylsphingosine regulates intracellular pH and $Ca^{2+}$ in human monocytes. J. Pharmacol. Sci., 100, 289-296 (2006) https://doi.org/10.1254/jphs.FPJ05009X
  13. Lim, H. S., Park, J. J., Ko, K., Lee, M. H., and Chung, S. K., Syntheses of sphingosine-1-phosphate analogues and their interaction with EDG/S1P receptors. Bioorg. Med. Chem. Lett., 14, 2499-2503 (2004) https://doi.org/10.1016/j.bmcl.2004.03.001
  14. Lipskaia, L. and Lompre, A. M., Alteration in temporal kinetics of $Ca^{2+}$ signaling and control of growth and proliferation. Biol. Cell, 96, 55-68 (2004) https://doi.org/10.1016/j.biolcel.2003.11.001
  15. Mano, N., Oda, Y., Yamada, K., Asakawa, N., and Katayama, K., Simultaneous quantitative determination method for sphingolipid metabolites by liquid chromatography/ionspray ionization tandem mass spectrometry. Anal. Biochem., 244, 291-300 (1997) https://doi.org/10.1006/abio.1996.9891
  16. Merrill, A. H., Jr., Wang, E., Mullins, R. E., Jamison, W. C., Nimkar, S., and Liotta, D. C., Quantitation of free sphingosine in liver by high-performance liquid chromatography. Anal. Biochem., 171, 373-381 (1988) https://doi.org/10.1016/0003-2697(88)90500-3
  17. Merrill, A. H., Jr., Nimkar, S., Menaldino, D., Hannun, Y. A., Loomis, C., Bell, R. M., Tyagi, S. R., Lambeth, J. D., Stevens, V. L., Hunter, R., Structural requirements for long-chain (sphingoid) base inhibition of protein kinase C in vitro and for the cellular effects of these compounds. Biochemistry, 28, 3138-3145 (1989) https://doi.org/10.1021/bi00434a004
  18. Okoshi, H., Hakomori, S., Nisar, M., Zhou, Q. H., Kimura, S., Tashiro, K., and Igarashi, Y., Cell membrane signaling as target in cancer therapy. II: Inhibitory effect of N,N,Ntrimethylsphingosine on metastatic potential of murine B16 melanoma cell line through blocking of tumor cell-dependent platelet aggregation. Cancer Res., 51, 6019-6024 (1991)
  19. Putney, L. K. and Barber, D. L., Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J. Biol. Chem., 278, 44645-44649 (2003) https://doi.org/10.1074/jbc.M308099200
  20. Thomas, J. A., Buchsbaum, R. N., Zimniak, A., and Racker, E., Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry, 18, 2210-2218 (1979) https://doi.org/10.1021/bi00578a012
  21. Yun, M. R., Okajima, F., and Im, D. S., The action mode of lysophosphatidylcholine in human monocytes. J. Pharmacol. Sci., 94, 45-50 (2004) https://doi.org/10.1254/jphs.94.45