Expression Profiling of Lipopolysaccharide Target Genes in RAW264.7 Cells by Oligonucleotide Microarray Analyses

  • Huang, Hao (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Park, Cheol-Kyu (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Ryu, Ji-Yoon (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Chang, Eun-Ju (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Lee, Young-Kyun (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kang, Sam-Sik (Natural Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Kim, Hong-Hee (Department of Cell and Developmental Biology, BK21 Program, Dental Research Institute, Seoul National University School of Dentistry)
  • Published : 2006.10.01

Abstract

In inflammatory responses, induction of cytokines and other immune regulator genes in macrophages by pathogen-associated signal such as lipopolysaccharide (LPS) plays a crucial role. In this study, the gene expression profile changes by LPS treatment in the macrophage/monocyte lineage cell line RAW264.7 was investigated. A 60-mer oligonucleotide microarray of which probes target 32381 mouse genes was used. A reverse transcription-in vitro translation labeling protocol and a chemileuminescence detection system were employed. The mRNA expression levels in RAW264.7 cells treated for 6 h with LPS and the control vehicle were compared. 747 genes were up-regulated and 523 genes were down-regulated by more than 2 folds. 320 genes showing more than 4-fold change by LPS treatment were further classified for the biological process, molecular function, and signaling pathway. The biological process categories that showed high number of increased genes include the immunity and defense, the nucleic acid metabolism, the protein metabolism and modification, and the signal transduction process. The chemokine-cytokine signaling, interleukin signaling, Toll receptor signaling, and apoptosis signaling pathways involved high number of genes differentially expressed in response to LPS. These expression profile data provide more comprehensive information on LPS-target genes in RAW264.7 cells, which will be useful in comparing gene expression changes induced by extracts and compounds from anti-inflammatory medicinal herbs.

Keywords

References

  1. Albina, J. E., Cui, S., Mateo, R. B., and Reichner, J. S., Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol., 150, 5080-5085 (1993)
  2. Asefa, B., Klarmann, K. D., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Keller, J. R., The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol. Dis., 32, 155-167 (2004) https://doi.org/10.1016/j.bcmd.2003.10.002
  3. Barton, G. M. and Medzhitov, R., Toll-like receptor signaling pathways. Science, 300, 1524-1525 (2003) https://doi.org/10.1126/science.1085536
  4. Chen, C., Chen, N., Lin, L., Hsieh, C., Chen, G., and Hsieh, M., Effects of Scutellariae Radix on gene expression in HEK 293 cells using cDNA microarray. J. Ethnopharmacol., 105, 346- 351 (2006) https://doi.org/10.1016/j.jep.2005.11.012
  5. Conti, P., Pang, X., Boucher, W., Letourneau, R., Reale, M., Barbacane, R. C., Thibault, J., and Theoharides, T. C., Impact of Rantes and MCP-1 chemokines on in vivo basophilic cell recruitment in rat skin injection model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood, 89, 4120-4107 (1997)
  6. Conti, P., Reale, M., Barbacane, R. C., Felaco, M., Grilli, A., and Theoharides, T. C., Mast cell recruitment after subcutaneous injection of RANTES in the sole of the rat paw. Br. J. Haematol., 103, 798-803 (1998) https://doi.org/10.1046/j.1365-2141.1998.01060.x
  7. Greenberg, S. A., DNA microarray gene expression analysis technology and its application to neurological disorders. Neurology, 57, 755-761 (2001) https://doi.org/10.1212/WNL.57.5.755
  8. Hoebe, K., Janssen, E. M., Kim, S. O., Alexopoulou, L., Flavell, R. A., Han, J., and Beutler, B., Upregulation of costimulatory molecules induced by lipopolysaccharide and doublestranded RNA occurs by Trif-dependent and Trifindependent pathways. Nat. Immunol., 4, 1223-1229 (2003) https://doi.org/10.1038/ni1010
  9. Kaisho, T. and Akira, S., Critical roles of Toll-like receptors in host defense. Crit. Rev. Immunol., 20, 393-405 (2000)
  10. Kajaste-Rudnitski, A., Mashimo, T., Frenkiel, M. P., Guenet, J. L., Lucas, M., and Despres, P., The 2', 5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. J. Biol. Chem., 281, 4624-4637 (2006) https://doi.org/10.1074/jbc.M508649200
  11. Lerdrup, M., Holmberg, C., Dietrich, N., Shaulian, E., Herdegen, T., Jaattela, M., and Kallunki, T., Depletion of the AP-1 repressor JDP2 induces cell death similar to apoptosis. Biochim. Biophys. Acta., 1745, 29-37 (2005) https://doi.org/10.1016/j.bbamcr.2005.06.008
  12. Luo, X., Ding, L., Xu, J., and Chegini, N., Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology, 146, 1097-1118 (2005) https://doi.org/10.1210/en.2004-1377
  13. Malathi, K., Paranjape, J. M., Bulanova, E., Shim, M., Guenther-Johnson, J. M., Faber, P. W., Eling, T. E., Williams, B. R., and Silverman, R. H., A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc. Natl. Acad. Sci. U.S.A., 102, 14533-14538 (2005)
  14. Mangan, D. F., Welch, G. R., and Wahl, S. M., Lipopolysaccharide, tumor necrosis factor-alpha, and IL-1 beta prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J. Immunol., 146, 1541-1546 (1991)
  15. Ozato, K., Tsujimura, H., and Tamura, T., Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques, S66-68, 70, 72 (2002)
  16. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., and Beutler, B., Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085- 2088 (1998) https://doi.org/10.1126/science.282.5396.2085
  17. Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., and Malo, D., Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med., 189, 615-625 (1999) https://doi.org/10.1084/jem.189.4.615
  18. Reed, J. C., Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr. Opin. Oncol., 7, 541-546 (1995) https://doi.org/10.1097/00001622-199511000-00012
  19. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470 (1995) https://doi.org/10.1126/science.270.5235.467
  20. Sharma, M., Arnason, J. T., Burt, A., and Hudson, J. B., Echinacea extracts modulate the pattern of chemokine and cytokine secretion in rhinovirus-infected and uninfected epithelial cells. Phytother. Res., 20, 147-152 (2006) https://doi.org/10.1002/ptr.1824
  21. Sorlie, T., Wang, Y., Xiao, C., Johnsen, H., Naume, B., Samaha, R. R., and Borresen-Dale, A. L., Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics, 7, 127 (2006) https://doi.org/10.1186/1471-2164-7-127
  22. Takeda, K. and Akira, S., Toll-like receptors in innate immunity. Int. Immunol., 17, 1-14 (2005)
  23. VanOtteren, G. M., Strieter, R. M., Kunkel, S. L., Paine, R., 3rd, Greenberger, M. J., Danforth, J. M., Burdick, M. D., and Standiford, T. J., Compartmentalized expression of RANTES in a murine model of endotoxemia. J. Immunol., 154, 1900- 1908 (1995)
  24. Volin, M. V., Shah, M. R., Tokuhira, M., Haines, G. K., Woods, J. M., and Koch, A. E., RANTES expression and contribution to monocyte chemotaxis in arthritis. Clin. Immunol. Immunopathol., 89, 44-53 (1998) https://doi.org/10.1006/clin.1998.4590
  25. Walker, S. J., Wang, Y., Grant, K. A., Chan, F., and Hellmann, G. M., Long versus short oligonucleotide microarrays for the study of gene expression in nonhuman primates. J. Neurosci. Methods, 152, 179-189 (2006) https://doi.org/10.1016/j.jneumeth.2005.09.007