DOI QR코드

DOI QR Code

Production of Mycelia and Water Soluble Polysaccharides from Submerged Culture of Ganoderma applanatum Using Different Types of Bioreactor

생물반응기 유형에 따른 잔나비불로초(Ganoderma applanatum)의 균사체 및 수용성 다당체 생산 특성

  • Lee, Wi-Young (Div. of Biotechnology, Korea Forest Research Institute) ;
  • Park, Young-Ki (Div. of Biotechnology, Korea Forest Research Institute) ;
  • Ahn, Jin-Kwon (Div. of Biotechnology, Korea Forest Research Institute) ;
  • Park, So-Young (Div. of Biotechnology, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 생물공학과) ;
  • 박영기 (국립산림과학원 생물공학과) ;
  • 안진권 (국립산림과학원 생물공학과) ;
  • 박소영 (국립산림과학원 생물공학과)
  • Published : 2006.06.30

Abstract

In order to select a suitable bioreactor type for the submerged cultivation of Ganoderma applanatum, both growth characteristics and polysaccharides production were compared among four different types of bioreactor. These include an external-loop type air-lift bioreactor (ETAB), a balloon type air bubble bioreactor (BTBB), a column type air bubble bioreactor (CTBB) and a stirrer type bioreactor (STB). The mycelial biomass produced from the reactors were in decreasing order: ETAB ($7\;g/{\ell}$) > BTBB ($6.2\;g/{\ell}$) > STB ($6\;g/{\ell}$) > CTBB ($5\;g/{\ell}$). Maximal soluble exopolysaccharides ($1\;g/{\ell}$) and endopolysaccharides (2.7%) were also obtained from ETAB. Thus, the ETAB was most suitable for submerged culture of G applanatum mycelium. Based on the results, ETAB was chosen for further detailed study. The most effective aeration rate for the mycelial growth in ETAB ranged from 0.05 to 0.1 vvm. For the maximal production, the mycelium at the initial growth stage needed low aeration rate to reduce cell damages by fluid flow. However, as the mycelia grew, the culture became viscous and thus needed higher aeration. The molecular weight of exopolysaccharides obtained from the culture grown in ETAB was higher than that from the culture grown in other bioreactors.

잔나비불로초 배양에 적합한 생물반응기를 선발하기 위하여 4종류의 생물반응기 형태별 균사체 생장특성과 다당체 생산량을 비교하였다. 균사체 생산량은 기포통기형 생물반응기($7\;g/{\ell}$) > 풍선형 생물반응기($6.2\;g/{\ell}$) > 교반형 생물반응기($6\;g/{\ell}$) > 컬럼형 생물반응기($5\;g/{\ell}$) 순으로 나타났으며, 기포통기형 생물반응기에서 가장 높은 세포외 다당체($1\;g/{\ell}$)와 세포 내다당체(2.7%)를 생산하여 기포통기형 생물반응기가 잔나비불로초 균사체 배양에 가장 적합한 것으로 나타났다. 세포외 다당체의 분자량도 생물반응기의 형태별에 따라 다르게 나타났으며, 기포통기형 생물반응기에서 가장 높은 분자량을 나타냈다. 기포통기형 생물반응기에서의 적정한 공기공급율은 0.05부터 0.1 vvm 사이로 나타났다. 특히 잔나비불로초 균사체는 배양하면서 배지의 점도가 높아져 점차 공기 공급량을 높여 주는 것이 좋은 것으로 판단된다.

Keywords

References

  1. 김성훈, 이주노, 김선희, 오세종, 안상욱, 이진하, 박영식, 정을권, 이현용. 1998. 잔나비걸상버섯 자실체 및 균사체의 생리활성 탐색. 한국생물공학회지 26: 331-337
  2. 이위영, 안진권, 가강현, 권영진. 2003. 공기부양식 생물반응기의 형태별 송이균사의 생장특성 비교. 한국균학회지 31: 89-93 https://doi.org/10.4489/KJM.2003.31.2.089
  3. 정선식, 어성국, 김영소, 한성순. 1999. 잔나비걸상버섯 수용성물질의 항인플루앤자 바이러스 작용과 인터페론과의 병용효과. 약학회지 43: 469-473
  4. 최근우, 이창우. 2000. 교반조 발효기와 공기부양 발효기내에서의 Phellinus linteus의 액체 배양. 화학공학 38: 310-315
  5. Belmar-Beiny, M. T. and Thomas, C. R. 1991. Morphology and clavulanic acid production of Streptomyces clavuligerus: Effect of stirrer speed in batch fermentations. Biotechnol. Bioeng. 37: 456-462 https://doi.org/10.1002/bit.260370507
  6. Calazans, G., Lima, R., Franca, F. and Lopes, C. 2000. Molecular weight and antitumor activity of Zymononas mobilis levens. Int. J. Biolog. Macromol. 27: 245-247 https://doi.org/10.1016/S0141-8130(00)00125-2
  7. Cui, Y. Q., van der Lans, R. G. J. M. and Luyben, K. C. A. M. 1997. Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol. Bioeng. 55: 715-726 https://doi.org/10.1002/(SICI)1097-0290(19970905)55:5<715::AID-BIT2>3.0.CO;2-E
  8. Engstad, C. S., Engstad, R. E., Olsen, J. O. and Osterud. 2002. The effect of soluble $\beta$-1,3-glucan and lipopolysaccharide on cytokine production and coagulation activation in whole blood. Int. Immunopharmacol. 2: 1585-1597 https://doi.org/10.1016/S1567-5769(02)00134-0
  9. Hwang, H. J., Kim, S. W., Choi, J. W. and Yun, J. W. 2003. Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb. Technol. 33: 309-319 https://doi.org/10.1016/S0141-0229(03)00131-5
  10. Kawagoe, M. 1996. Applications of the bubble column in biotechnology. Proceedings of the 4th Japan-Korea symposium on separation technology. Pp 623-626
  11. Kawagoe, M., Kawakami, K., Nakamura, Y., Naoe, K., Miki, K. and Noda, H. 1999. Submerged culture of Tricholoma matsutake mycelium in bubble column fermenters. J. Biosci. Bioeng. 87: 116-118 https://doi.org/10.1016/S1389-1723(99)80020-6
  12. Kim, H. O., Lim, J. M., Joo, J. H., Kim, S. W., Hwang, H. J., Choi, J. W. and Yun, J. W. 2004. Optimization of submerged culture conditions for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Biores. Technol. 96: 1175-1182
  13. Kim, J. H., Lebeault, J. M. and Reuss, M. 1983. Comparative study on rheological properties of mycelial growth in filamentous and pelleted forms. Euro. J. Appl. Microb. Biotechnol. 18: 11-16 https://doi.org/10.1007/BF00508123
  14. Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J. and Yun, J. W. 2004. Submerged culture conditions for the production of mycelial biomass and exopolysacchari des by the edible Basidiomycete Grifola frondosa. Enzyme Microb. Technol. 35: 369-376 https://doi.org/10.1016/j.enzmictec.2003.12.015
  15. Lee, K. M., Lee, S. Y. and Lee, H. Y. 1999. Bistage control of ph for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J. Biosci. Bioeng. 88: 646-650 https://doi.org/10.1016/S1389-1723(00)87094-2
  16. Mizuno, T. 1999. Bioactive substances in Hericium erinaceus (Bull. Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int. J. Med. Mushr. 1: 109-119
  17. Mizuno, T. 1999. The extraction and development of antitumoractive polysaccharides from medicinal mushrooms in Japan. International Journal of Medicinal Mushrooms. 1: 9-29 https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
  18. Nishitoba, T., Goto, S., Sato, H. and Sakamura, S. 1988. Bitter triterpenoids from the fungus Ganoderma applanatum. Phytochemistry 28: 193-197
  19. Paek, K. Y., Hahn, E. J. and Son, S. H. 2001. Application of bioreactors for large-scale micropropagation systems of plants. in vitro cell. Dev. Biol.-Plant. 37: 149-157 https://doi.org/10.1007/s11627-001-0027-9
  20. Peng, Y., Zhang, L., Zeng, F. and Kennedy, J. F. 2005. Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr. Polymer. 59:385-392
  21. Shu, C. H. and Lung, M. Y. 2003. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochem. 39: 931-937 https://doi.org/10.1016/S0032-9592(03)00220-6
  22. Sinha, J., Bae, J. T., Park, J. P., Song, C. H. and Yun, J. W. 2001. Effect of substrate concentration on browth rheology and fungal morphology during exo-biopolymer production by Paecilomyces japonica in a batch bioreactor. Enzyme Microb. Technol. 29: 392-399 https://doi.org/10.1016/S0141-0229(01)00418-5
  23. Smith, J. J., Lilly, M. D. and Fox, R. I. 1990. The effect of agitation on the morphology and penicillin production of Penicillium chrysogenum. Biotechnol. Bioeng. 35: 1011-1023 https://doi.org/10.1002/bit.260351009
  24. Tsukada, C., Yokoyama, H., Miyaji, C., Ishimoto, Y., Kawamura, H. and Abo, T. 2003. Immunopotentiation of interaepithelial lymphocytes in the intestine by oral administrations of $\beta}$-glucan. Cellular Immunol. 221: 1-5 https://doi.org/10.1016/S0008-8749(03)00061-3
  25. Usui, T., Iwasaki, Y., Mizuno, T., Tanaka, M., Shinkai, K. and Arakawa, M. 1983, Isolation and characterization of antitumor active $\beta$-D-glucans from the fruit bodies of Ganoderma applanatum. Carbohydr. Res. 115: 273-280 https://doi.org/10.1016/0008-6215(83)88159-2
  26. van't Riet, K. and Tramper, J. 1991. Basic bioreactor design. Marcel Dekker, Inc. New York. 465pp
  27. Xu, C. P. and Yun, J. W. 2004. Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter. Enzyme Microb. Technol. 35: 33-39 https://doi.org/10.1016/j.enzmictec.2004.03.012