DOI QR코드

DOI QR Code

Physicochemical Characteristics of Ethanol Extracts from Each Part of the Pleurotus eryngii

새송이버섯(Pleurotus eryngii) 부위별 추출물의 이화학적 특성

  • Ahn, Myung-Soo (Department of Food and Nutrition, Sungshin Women's University) ;
  • Kim, Hyun-Jeung (Department of Food and Nutrition, Sungshin Women's University) ;
  • Seo, Mi-Sook (Department of Food and Nutrition, Sungshin Women's University)
  • 안명수 (성신여자대학교 식품영양학과) ;
  • 김현정 (성신여자대학교 식품영양학과) ;
  • 서미숙 (성신여자대학교 식품영양학과)
  • Published : 2006.06.30

Abstract

This study has examined the physicochemical properties of the Pleurotus eryngii, including their proximate components, amount mineral content, total dietary fiber, total sugar, reducing sugar and free sugar. Additionally, it measured the P. egii ethanol extracts and the total amounts of polyphenol compounds as well as its electron donating ability (EDA) of the substance fraction (SF). The P. eryngii powder's moisture content was 9.0% and each of the other element content such as carbohydrate, crude protein, crude ash and crude fat was found to be 63.06%, 20.70%, 5.20% and 2.0% respectively. Potassium (K) was shown to be the greatest inorganic content and manganese (Mn) was the lowest. Furthermore fructose, galactose, glucose lactose and maltose free sugar content was found in this order. 387 mg% of the total amounts of polyphenol was found in the P. eryngii whole body ethanol extract, 158 mg% in the stipe extract, 593 mg% in the pileus extract and 607 mg% in the substance fraction (SF). Electron donating ability (EDA) was highest at 91.12% in the whole body extract and lowest at 62.90% in the stipe extract. Additionally, the EDA for substance fraction (SF) 0.02%-0.1% was found to be 57.78-77.33%, which was lower than the 0.02%-tocopherol (93.92%) and BHT (96.72%). From these results, it can be assumed that P. eryngii offers superior antioxidative effects with its high content of fiber, inorganic materials and total amounts of polyphenol as well as high electron donating ability (EDA), thereby making it ideal for use in functional foods and industrial materials.

본 연구결과 동결건조한 새송이 버섯 분말의 수분함량은 9.0%였고 당질이 63.06%로 가장 높았으며 조단백질 20.70%, 조회분 5.20% 및 조지방 2.0%의 순이었다. 새송이버섯은 높은 당질 중 대부분이 열량을 내지 않는 식이섬유질이 50% 이상으로 많은 부분을 차지하고 있으므로 저열량, 고식이섬유질 식품으로 건강에 유익한 기능성 식품으로 각광을 받을 수 있을 것으로 사료된다. 새송이버섯 분말의 무기질은 Ca, Cu, Fe, Mn, Mg, Na, K, Zn등 8종의 무기질을 확인하였는데 모든 부위에서 K이 가장 함량이 높았으며 그다음으로는 Mg이 모든 부위에시 700.00 mg/kg으로 함량이 높았다. 기둥의 Mn 함량이 무기질 중 가장 함량이 낮았다. 또한 새송이버섯 분말의 총당은 30410.0 mg%로 매우 높았으며 환원당은 873.5 mg%를 나타냈으며 유리당 중 Fructose의 함량이 1671 mg%으로 가장 높았으며 maltose 함량이 가장 낮았다. 새송이버섯 추출물의 전자공여능은 갓, 전체, 기둥 에탄올 추출물이 91.12%, 79.68%, 62.90%의 순이었으며 이는 총 폴리페놀 함량과 같은 경향을 보여주었고, 0.02% ${\alpha}-tocopherol$과 BHT의 경우 93.92%, 95.72%로 활성이 매우 높았지만 갓 추출물의 경우 91.12%로 새송이버섯의 항산화효과를 확인 할 수 있었다. 또한 분리 정제된 SF를 ${\alpha}-tocopherol$과 BHT와 같은 농도인 0.02%와 0.05%, 0.1%로 추출물의 농도를 조절하여 전자공여능을 측정한 결과 0.02%에서는 57.78%, 0.05%에서는64.20% 및 0.1%에서는 77.33%의 활성을 보였으며 대조군인 ${\alpha}-tocopherol$과 BHT와 비교하면 ${\alpha}-tocopherol$은 93.92%, BHT는 96.72%로 SF 0.02%와는 차이가 컸지만 다른 버섯추출물들과 비교하면 결코 낮은 값이 아니었다. 이상의 결과를 종합하면, 새송이버섯은 식이섬유질과 무기질 함량이 풍부하면서 저열량 식품이며 총 폴리페놀 함량과 전자공여능 활성이 높아 항산화효과가 우수한 식품으로 기능성 식품 및 산업 소재로서의 활용도가 매우 높을 것으로 사료된다.

Keywords

References

  1. A.O.A.C. 1990. Official methods of analysis, 15th ed., Assosiation of Official Analytical Chemists Society. Washington, D.C., pp 994
  2. Boekhout, T. 1990. Pleurotus. Flora Agaricina Neelandica. 2: 20-24
  3. Choi SH. 2000. Extraction and Purification of Bioactive Materials from Agaricus Blazei. Masters degree thesis. Seugang University
  4. Choi YH, Kim MJ, Lee HS. Yun BS, Hu C, Kwak SS. 1998. Antioxidative compounds in aerial parts of potentilla fragariodes. Korean J. Phamtacogn, 29(2): 79-85
  5. Dermar A. 1974. Pleurotus eryngii (DC. ex Fr) Quel, in Slovkia. Ceske Mykologie. 28: 57-59
  6. Eger G. 1978. Biology and breeding of Pleurotus, in The Biology and Cultivation of edible Mushroom. Academic Press. New York, pp 78-92
  7. Henry, RJ. and Saini, H.S. 1989. Characterization of cereal sugars and oligosaccharides. Cereal Chem., 66: 362
  8. Hilber O. 1989. Valid, invalid and confusing taxa of the enus Pleurotus. Mushroom Sri., 12: 241-248
  9. Hong KH, Kim BY, Kim HK. 2004. Analysis of Nutritional Components in Pleurotus Ferulea. Korean J. Food Sri. Technol, 36(4): 563-567
  10. Hui YF, Den ES, Chi TH. 2002. Antioxidant and free radical scavenging activities of edible mushrooms. J. Food Lipids, 9(1): 35-46 https://doi.org/10.1111/j.1745-4522.2002.tb00206.x
  11. Hwang YJ, Nam HK, Chang MJ, Noh GW, Kim SH. 2003. Effect of lentinus edodes and Pleurotus erngii extracts on proliferation and apoptosis in human coloc cancer cell lines. Korean J. Food Sci. Nutr., 32(2): 217-222 https://doi.org/10.3746/jkfn.2003.32.2.217
  12. Jeong CH, Shim KW. 2004. Quality characteristics of sponge cakes with addition of Pleurotus erngii mushroom powders. Korean J. Food Sci. Nutr., 33(4): 716-722 https://doi.org/10.3746/jkfn.2004.33.4.716
  13. Jeong DH, Jang HK. 1982. Food analysis method. Samjoogdang, Seoul, pp 159
  14. Kazuno C. and Miura E. 1984. Nippon Shokuhin Kogyo Gakkaishi 31: 208
  15. Kang MS 1999. Studies on the artifical cultivation and physiological activity of Pleurotus eryngii. Masters degree thesis. Kangwon National University
  16. Kang TS, kang MS, Sung JM, Kang AS, Shon HR, and Lee SY. 2001. Effect of Pleurotus erngii on the Blood Glucose and cholesterol in Diabetic Rats. Korean J. Mycol., 29(2): 86-90
  17. Kang TS, Jeong HS, Lee MY, Park HJ, Jho TS, Ji ST, Shin MK. 2003. Mycelial growth using the natural product and angiotensin converting enzyme inhibition activity of Pleurotus erngii. Korean J. Mycol., 31(2): 175-180 https://doi.org/10.4489/KJM.2003.31.3.175
  18. Kim HK, Choi YJ, Kim KH. 2002. Functional activities of microwave- assisted extracts from Flammulina velutipes. Korean J. Food Sci. Technol, 34: 1013-1017
  19. Kim HK, Choi YJ, Jeong SW, and Kim KH. 2002. Functional activities of microwave-assisted extracts from Lyophyllum ulmarium.. Korean J. Food Preservationl, 9(4): 385-390
  20. Kim HS, Ha HC, Kim TS. 2003. Reserch and prospects in new functional mushrooms. Korean J. Food Sci. Industry, 36(4): 42-46
  21. Kim JY, Moon KD, Lee SD, Cho SH, Kang HI, Yee ST, and Seo KI. 2004. Physicochemical Properties of Pleurotus eryngii, Korean J. food Preservation, 11(3): 347-351
  22. Lee BW, Lee MS, Park KM, Kim CH, Ahn PU, Choi CU. 1992. Anticancer activities of extract from the mycelia of coriolus versicolor. Korean J. Appl. Microbiol. Biotechnol, 20(3): 311-315
  23. Lee DJ. 2002. Studies on characteristis of isolates, bioactivity and artifical cultivation of Pleurotus eryngii Quel. Ph.D. degree thesis, Dankook Universty
  24. Lee JW, Bang KW. 2001. Biological activity of Phellinus spp. Korean J. Food Industry and Nutrition, 6(1): 25-33
  25. Lee YS. 2000. Antioxidative activity of Agastache rugosa O. Kuntze extract and the isolation and characterization of Flavonoid, Acacetin. Ph.D. degree thesis. Sungshin Women's University, pp 44-46
  26. Pamela M, Loreta G, Stefania M, Vittorio V, Laura P. 1999. Nutrients in edible mushroom: an inter-species comparative study. Food Chemistry, 65: 477-482 https://doi.org/10.1016/S0308-8146(98)00212-X
  27. Pamela M, Stefania M, Altero A, Laura P. 2004. Commercial mushrooms: nutritional quality and effect of cooking. Food Chemistry, 84: 201-206 https://doi.org/10.1016/S0308-8146(03)00202-4
  28. Slavin, S. 1971. Emission spectrochemical analysis. Wiley interscience. New York, pp 171
  29. Song JH, Lee HS, Hwang JK, Chung TY, Hong SR, Park KM. 2003. Physiological activities of Phellinus ribis extracts. Korean J. Food Sci. Technol., 35(4): 690-695
  30. Williams BW. Cuvelier ME and Berset C. 1995. Use of free radical method to evaluate antioxidant. Lebensm Wissu Technol, 28(1): 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  31. Yang HC, Song CH, Kweon MH. 1996. Mycelial new material, food functional technoligy. Hanlim. Seoul, pp 187-189
  32. Yim SB, Kim MO, Koo SJ. 1991. Dertermination of Dietary Fiber Contents in Mushrooms, Korean J. Soc. Food Sci, 7(3):69-76