Effect of Sasa Borealis and White Lotus Roots and Leaves on Insulin Action and Secretion In Vitro

In vitro에서 조릿대, 연근과 연잎이 인슐린 작용 및 분비에 미치는 영향

  • 고병섭 (한의학연구원) ;
  • 전동화 (호서대학교 자연과학대학) ;
  • 장진선 (호서대학교 자연과학대학) ;
  • 김주호 (아산시농촌기술센터 특화작물과) ;
  • 박선민 (호서대학교 자연과학대학)
  • Published : 2006.02.01

Abstract

Anti-diabetic effects of extracts and fractions of Sasa borealis (SB), white lotus roots (LR) and leaves (LL), and their mixture were determined in 3T3-L1 adipocytes and Min6 cells by investigating insulin-sensitizing activity and glucose-stimulated insulin secretion, respectively. SB, LR, LL, and mixture of SB, LR, and LL (3 : 2 : 3) were extracted using 70% ethanol, and m mixture extract was fractionated by XAD-4 column chromatography with serial mixture solvents of methanol and water. Fractional extractions were utilized for anti-diabetic effect assay. SB and LR extracts increased insulin-stimulated glucose uptake, but not as much as mixture of SB, LR, and LL. Significant insulin-sensitizing activities of 20 and 80% methanol fractions of SB, LR, and LL mixture extract were observed in 3T3-L1 adipocytes, giving 0.5 or $5\;{\mu}g/mL$ each fraction with 0.2 nM insulin to attain glucose uptake level similar to that attained by 10 nM insulin alone. Similar to pioglitazone, peroxisome proliferators-activated $receptor-{\gamma}\;(PPAR-{\gamma})$ agonist, 20 and 80% methanol fractions increased adipocytes by stimulating differentiation from fibroblasts and triglyceride synthesis. LL extract and 20, 60, and 80% methanol fractions of the mixture suppressed ${\alpha}-amylase$ activity, but did not modulate insulin secretion capacity of Min6 cells in both low and high glucose media. These data suggest 20 and 80% methanol tractions contain potential insulin sensitizers with functions similar to that of $PPAR-{\gamma}$ agonist. Crude extract of SB, LR, and LL mixture possibly improves glucose utilization by enhancing insulin-stimulated glucose uptake and inhibiting carbohydrate digestion without affecting insulin secretion in vivo.

백련 뿌리 및 잎과 조릿대는 과거부터 약용으로 사용해 왔지만 아직까지 연구도 많이 이루어지지 않았고, 항당뇨 효과에 대한 연구도 거의 없었다. 본 연구에서는 백련 뿌리 및 잎과 조릿대의 추출물과 분획물이 in vitro에서 인슐린 작용, 인슐린 분비 또는 탄수화물의 소화에 효과적인지를 조사함으로 항당뇨에 효과적인지 여부를 조사하였다. 백련 뿌리 및 잎과 조릿대의 추출물은 각각 물로 추출하여 항당뇨 효과를 조사하였다. 또한 백련 뿌리 및 잎과 조릿대의 3 : 2 : 3으로 혼합하여 물로 추출한 후 이를 메탄올과 물을 섞은 용액으로 단계별로 XAD-4 column으로 분획하였다. 백련 뿌리 및 잎과 조릿대의 추출물과 혼합물의 분획물은 고농도(1 mg/mL)에서도 MTT 방법으로 측정하였을 때 세포 독성을 나타내지 않았다. 백련 뿌리와 조릿대 물추출물은 인슐린 작용을 향상시키는 효능이 있었고, 백련잎 물추출물은 ${\alpha}-amylase$를 억제하여 탄수화물의 소화 흡수를 지연시켰다. 이에 백련 뿌리 및 잎과 조릿대를 3 : 2 : 3으로 혼합하였을 때 20과 80% 메탄올층은 3T3-L1 지방세포에 처리하였을 때 인슐린의 작용을 향상시켜 포도당의 흡수를 증가시키는 효과가 인슐린을 10 nM을 처리한 것 만큼 효과적으로 포도당 흡수를 증가시켰다. 이 층에는 3T3-L1 섬유아세포에 분화 유도물질과 함께 처리하였을 때 $PPAR-{\gamma}$ agonist인 rosiglitazone과 마찬가지로 지방 세포로의 분화를 촉진시키고 지방의 축적도 증가시켰다. 그러므로 80% 메탄올 층에는 $PPAR-{\gamma}$ agonist로 작용하는 물질이 함유되어 있을 가능성이 높다. 베타세포라인인 Min6 세포에 백련 뿌리 및 잎과 조릿대의 혼합물의 분획물을 처리한 후 저농도와 고농도 포도당 자극시 인슐린 분비를 측정하였을 때 두 농도에서 모두 인슐린 분비에 영향을 미치지 않았다. 또한 백련 뿌리 및 잎과 조릿대의 혼합물의 20, 60과 80% 메탄올 분획층은 탄수화물의 소화에 작용하는 효소인 ${\alpha}-amylase$의 활성을 16% 정도를 억제하는 효과가 있었다. 결론적으로 백련 뿌리 및 잎과 조릿대의 추출물과 분획물에는 인슐린 분비나 탄수화물의 소화에 관여하는 성분이 없지만, 인슐린 작용을 향상시키는 인슐린 민감성 물질이 함유되어 있을 가능성이 높다.

Keywords

References

  1. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NTDDM: A balanced overview. Diabetes Care 15: 318-353 (1992) https://doi.org/10.2337/diacare.15.3.318
  2. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. Molecular mechanism of insulin resistance and obesity. Exp. Biol. Med. (Maywood) 228: 1111-1117 (2003) https://doi.org/10.1177/153537020322801003
  3. Min HK. Clinical characteristics of Korean diabetic patients. Korean J. Diabetes 16: 163-170 (1992)
  4. Kim J, Choi S, Kong B, Oh Y, Shinn S. Insulin secretion and sensitivity during oral glucose tolerance test in Korean lean elderly women. J. Korean Med. Sci. 16: 592-597 (2001) https://doi.org/10.3346/jkms.2001.16.5.592
  5. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Yarns A, Kim D, Baron AD. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26: 2370-2377 (2003) https://doi.org/10.2337/diacare.26.8.2370
  6. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Gori M, Coppini A, Moghetti P. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism 52: 862-867 (2003) https://doi.org/10.1016/S0026-0495(03)00101-X
  7. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V. On the mechanism of alpha-amylase. Eur. J. Biochem. 270: 3871-3879 (2003) https://doi.org/10.1046/j.1432-1033.2003.03733.x
  8. Hae J. DongEuBoGam. NamSanDang, Seoul, Korea. pp. 140-142 (1990)
  9. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T. Dual action of isoprenols from herbal medicines on both PPAR-r and PPAR-a in 3T3-Ll adipocytes and HepG2 hepatocytes. FEBS Lett. 514: 315-322 (2002) https://doi.org/10.1016/S0014-5793(02)02390-6
  10. Kamei R, Kadokura M, Kitagawa Y, Hazeki O, Oikawa S. 2'-benzyloxychalcone derivatives stimulate glucose uptake in 3T3-L1 adipocytes. Life Sci. 73: 2091-2099 (2003) https://doi.org/10.1016/S0024-3205(03)00563-0
  11. Ju YS, Park S, Ko BS. Effect of Insulin-like Action and Insulin Signal Transduction on 3T3-L1 Adipocytes from Coisis Semen. Korean J. Chinese Med. 23: 103-114 (2002)
  12. Ko BS, Kim HK, Park S. Insulin sensitizing and insulin-like effects of water extracts from Kalopanax pictus NAKA fractions in 3T3-L1 adipocytes. Korean J. Agric. Chem. Biotech. 45: 42-46 (2002)
  13. Choi SB, Park S. The effects of water extract of Polygonatum Odoratum (Mill) Druce on insulin resistance in 90% pancreatectomized rats. J. Food Sci. 67: 2375-2379 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb09556.x
  14. Park S, Jun DW, Park CH, Jang JS, Park SK, Ko BS, Kim BJ, Choi SB. Hypoglycmic effects of crude extracts of Moutan Radicis Cortex. Korean J. Food Sci. Technol. 36: 472-477 (2004)
  15. Lee MJ, Moon GS. Antioxidative effects of Korean bamboo trees, Wang-dae, Som-dae, Maengjong-juk, Jolit-dae, O-juk. Korean J. Food Sci. Technol. 35:1226-1232 (2003)
  16. Yoon KD, Kim CY, Huh H. The flavone glycosides of Sasa Borealis. Korean J. Pharmacogn. 31 :224-227 (2000)
  17. Xiao JH, Zhang JH, Chen HL, Feng XL, Wang JL. Inhibitory effects of isoliensinine on bleomycin-induced pulmonary fibrosis in mice. Planta Med. 71: 225-230 (2005) https://doi.org/10.1055/s-2005-837821
  18. Ling ZQ, Xie BJ, Yang EL. Isolation, characterization, and determination of antioxidative activity of oligomeric procyanidins from the seedpod of Nelumbo nucifera Gaertn. J. Agric. Food Chem. 53: 2441-2445 (2005) https://doi.org/10.1021/jf040325p
  19. Ball AJ, Flatt PR, McClenaghan NH. Stimulation of insulin secretion in clonal BRIN-BD11 cells by the imidazoline derivatives KU14r and RX801080. Pharmacol. Res. 42: 575-579 (2000) https://doi.org/10.1006/phrs.2000.0739
  20. Choi BS, Park S. A Steroidal Glycoside from Polygonatum odoratum (Mill.) Druce. Improves Insulin Resistance but does not Alter Insulin Secretion in 90% Pancreatectomized Rats. Biosci. Biotech. Biochem. 66: 2036-2043 (2002) https://doi.org/10.1271/bbb.66.2036
  21. Krenisky JM, Luo J, Carney JR. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubsecens (Fabaceae), a peruvian medicinal plant used for the treatment of diabetes. Biol. Pharm. Bull. 22: 1137-1140 (1999) https://doi.org/10.1248/bpb.22.1137
  22. Hong SJ, Fong JC. Hwang JH. Effect of crude drugs on glucose uptake in 3T3-Ll adipocyte. Gaxiong Yi Xue Ke Xue Za Zhi 16: 445-451 (2000)
  23. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K. Lipid rafts/ caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-Ll preadipocyte differentiation induction. J. Biol. Chem. 278: 11561-11569 (2003) https://doi.org/10.1074/jbc.M211785200
  24. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferation-activated receptor-gamma agonists. Endocrinology 143: 2106-2118 (2002) https://doi.org/10.1210/en.143.6.2106
  25. Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol. Cell Biol. 21: 2521-2532 (2001) https://doi.org/10.1128/MCB.21.7.2521-2532.2001
  26. Yamamoto H, Kurebayashi S, Hirose T, Kouhara H, Kasayama S. Reduced IRS-2 and GLUT4 expression in PPAR gamma 2-induced adipocytes derived from C/EBPbeta and C/EBPdelta-ceficient mouse embryonic fibroblasts. J. Cell Sci. 115: 3601-3607 (2002) https://doi.org/10.1242/jcs.00044
  27. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411 (2005) https://doi.org/10.2165/00003495-200565030-00005
  28. Quesada I, Soria B. Intracellular location of KATP channels and sulphonylurea receptors in the pancreatic beta-cell: new targets for oral antidiabetic agents. Curr. Med. Chem. 11: 2707-2716 (2004) https://doi.org/10.2174/0929867043364379
  29. Drucker DJ. Development of glucagon-like peptide-l-based paarmaceuticals as therapeutic agents for the treatment of diabetes. Curr. Pharm. Res. 7: 1399-1412 (2001) https://doi.org/10.2174/1381612013397401
  30. Herrmann BL, Schatz H, Pfeiffer A. Continuous blood glucose monitoring: the acute effect of acarbose on blood glucose variations. Med. Klin. 93: 651-655 (1998)
  31. Carrascosa JM, Molero JC, Fermin Y, Martinez C, Andres A, Satrustegui, J. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes. Metab. 3: 240-248 (2001) https://doi.org/10.1046/j.1463-1326.2001.00102.x
  32. Scheen AJ. Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials. Diabetes Metab. 24: 311-320 (1998)