Quality Characteristics of Surimi-Based Product with Sea Tangle Single Cell Detritus (SCD)

다시마 Single Cell Detritus(SCD)를 첨가하여 제조한 수산연제품의 품질특성

  • Bang, Sang-Jin (Korea Food Research Institute) ;
  • Shin, Il-Shik (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Chung, Dong-Hwa (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • Kim, Sang-Moo (Faculty of Marine Bioscience & Technology, Kangnung National University)
  • 방상진 (한국식품연구원) ;
  • 신일식 (강릉대학교 해양생명공학부) ;
  • 정동화 (강릉대학교 해양생명공학부) ;
  • 김상무 (강릉대학교 해양생명공학부)
  • Published : 2006.06.01

Abstract

The quality characteristics of a surimi-based product with sea tangle single cell detritus (SCD) were studied in order to utilize SCD from sea tangle as a food additive. Mixture design and regression models were applied to optimize the processing conditions and to investigate the interaction between surimi and the other ingredients. Surimi and SCD decreased hardness and cohesiveness of surimi gels, and then increased them. Water increased hardness and then decreased it, whereas cohesiveness was reversed. Surimi and water increased gumminess and brittleness of surimi gels, but SCD decreased them. SCD increased water retention ability (WRA) and whiteness of surimi gels, whereas water decreased it. Hardness and cohesiveness fitted nonlinear models by ANOVA, but gumminess, brittleness, WRA and whiteness fitted linear models. The response constraint coefficient showed that surimi influenced hardness and whitenessmore than water and SCD, whereas water influenced WRA more than surimi and SCD. Moreover, SCD influenced cohesiveness, gumminess and brittleness more than surimi and water. Hardness and cohesiveness fitted nonlinear models with interaction terms for surimi-SCD and surimi-water, respectively. Optimum mixed ratio values of surimi, water, and SCD were 36.80, 57.07 and 4.14%, respectively, by mixture model.

다시마를 Vibrio sp.로 분해하여 제조한 SCD를 첨가하여 수산 연제품을 만들어 그 특성을 분석하였다. 원료의 최적 배합 비율을 구하기 위하여 mixture program의 modified distance design을 적용하였다. 수리미와 SCD의 첨가량이 증가할수록 hardness와 cohesiveness 값은 감소 후 증가하였다. SCD의 첨가량이 증가할수록 hardness의 값은 증가 후 감소하였으나 cohesiveness 값은 감소 후 증가하였다. 수리미와 물의 첨가량이 증가할수록, SCD의 첨가량이 감소할수록 gumminess와 brittleness의 값은 증가하였다. SCD의 첨가량이 증가할수록, 물의 첨가량이 감소할수록 수분보유력과 백색도의 값은 증가하였다. 수리미의 첨가량이 증가할수록 백색도의 값은 증가한 반면, 수분보유력은 감소하였다. ANOVA 분석에 의한 다시마 SCD 어육 gel의 Hardness 및 cohesiveness는 nonlinear model(Quadratic model)이 결정되었으며, gumminess, brittleness, 수분보유력 및 백색도는 linear model이 결정되었다. Constraint coefficient 값의 분석 결과 수리미는 hardness 및 백색도에 가장 큰 영향을 미쳤고, cohesiveness, gumminess, brittleness에서는 SCD가, 수분보유력에서는 물이 가장 큰 영향을 미쳤다. Hardness는 surimi-SCD의 상호작용이 있었으며 cohesiveness에서는 surimi-water의 상호작용이 나타났다. Modified distance design에 의한 다시마 SCD 어육 gel의 수리미, 물 및 SCD의 최적배합 비율은 각각 36.80, 57.05 및 4.14%이었다.

Keywords

References

  1. Wu MC. Manufacture of surimi-based product. pp. 245-272. In: Surimi Technology, Lanier TC, Lee CM. (eds). Marcel Dekker, New York, NY, USA (1992)
  2. Lanier TC, Hart K, Martin RE. A manual of standard methods for measuring and specifying the properties of surimi. University of North Carolina Sea Grant College Program, Raleigh, NC, USA(1991)
  3. Davis N. Fatty fish utilization: Upgrading feed to food. UNC Sea Grant College Publication UNC-SG-88-04 (1988)
  4. Shumizu Y, Toyohara, Lanier TC. Surimi production from fatty and dark-freshed fish species. pp. 118-208. In: Surimi Technology, Lanier TC, Lee CM. (eds). Marcel Dekker, New York, NY, USA (1992)
  5. Park JW. Ingredient technology and formulation development. pp. 343-391. In: Surimi and Surimi Seafood. Park JW. (ed). Marcel Dekker, New York, NY, USA (2000)
  6. Yoon WB, Park JW, Kim BY. Surimi-starch interaction based on mixture design and regression models. J. Food Sci. 62: 555-560 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04429.x
  7. Park JW. Function protein additives in surimi gels. J. Food Sci. 59: 525-527 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb05554.x
  8. Yasunaga K, Abe K, Yamazawa M, Arai Kl. Effect of bovine plasma on heat-induced cross-linking of myosin heavy chains in salt-ground meat from walleye pollack frozen surimi. Nippon Suisan Gakkaishi 63: 739-747 (1997) https://doi.org/10.2331/suisan.63.739
  9. Chen JS. Optimization in the formulation of surimi based extrude products. MS thesis, University of Rhode Island, Kingston, RI, USA (1987)
  10. Seki N, Uno H, Lee NH, Kimura I, Toyoda K, Fujita T, Arai K. Transglutaminase activity in Alaska pollock muscle and surimi and its reaction with myosin. Nippon Suisan Gakkaishi 56: 125-132 (1990) https://doi.org/10.2331/suisan.56.125
  11. Usui T, Asari K, Mizuno T. Isolation of highly fucoidan from Eisenia bicyclis and its anticoagulant and antitumor activities. Agr. Biol. Chem. Tokyo 44: 1965-1970 (1980) https://doi.org/10.1271/bbb1961.44.1965
  12. Nishino T, Aizu Y, Nagumo T. The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurom. Agr. Biol. Chem. Tokyo 55: 791-797 (1991) https://doi.org/10.1271/bbb1961.55.791
  13. Kwon EA, Chang MJ, Kim SH. Quality characteristics of bread containing Laminaria powder. J. Korean Food Sci. Nutr. 32: 406-412 (2003) https://doi.org/10.3746/jkfn.2003.32.3.406
  14. Seo CH, Lee JW, DO JH, Chang KS. Quality characteristics of Korean red ginseng powder on pulverizing methods. J. Ginseng Res. 26: 79-84 (2002) https://doi.org/10.5142/JGR.2002.26.2.079
  15. Uchida M, Nakayama A, Abe S. Distribution and characterization of bacteria capable of decomposing brown algae fronds in waters associated with Laminaria vegetation. Fisheries Sci. 61: 117-120 (1995) https://doi.org/10.2331/fishsci.61.117
  16. Uchida M, Nakata K, Maeda M. Introduction of detrital food webs into an aquaculture system by supplying single cell algal detritus produced from Laminaria japonica as a hatchery diet for Artermia nauplii. Aquaculture 154: 125-137 (1997) https://doi.org/10.1016/S0044-8486(97)00047-1
  17. Ando Y, Inoue K. Decomposition of alginic acid by microorganisms-IV. On the Vibrio-type bacteria, newly isolated from the decaying Laminaria. J. Jap. Soc. Sci. Fish. 27: 339-341 (1961) https://doi.org/10.2331/suisan.27.339
  18. Ando Y, Inoue K. Decomposition of alginic acid by microorganisms-V. On the alginase of Vibrio sp. SO-20 strain. J. Jap. Soc. Sci. Fish. 27: 342-347 (1961) https://doi.org/10.2331/suisan.27.342
  19. Kitamikado M, Tseng CH, Aoki T, Yamaguchi K, Araki T. Isolation of bacteria capable of producing alginate-degrading enzyme from natural environment. Nippon Suisan Gakkaishi 55: 709-713 (1989) https://doi.org/10.2331/suisan.55.709
  20. Tseng CH, Yamaguchi K, Kitamikado M. Isolation and some properties of alginate lyase from a marine bacterium Vibrio sp. AI-128. Nippon Suisan Gakkaishi 58: 533-538 (1992) https://doi.org/10.2331/suisan.58.533
  21. Uchida M, Murata M. Fermentative preparation of single cell detritus from seaweed, Undaria pinnatifida, suitable as a replacement hatchery diet for unicellular algae. Aquaculture 207: 345-357 (2002) https://doi.org/10.1016/S0044-8486(01)00792-X
  22. Yoon WB, Park JW, Kim BY. Surimi-starch interactions based on mixture design and regression model. J. Food Sci. 62: 555-560 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04429.x
  23. Kim SM. Surimi-alginate gels as affected by setting: A study based on mixture design and regression models. Food Res. Int. 36: 295-302 (2003) https://doi.org/10.1016/S0963-9969(02)00171-0
  24. Chung HS, Song SD, Roh KS, Song JS, Park KE. The effects of acidic eletrolytic water on the development of barley chloroplast. J. Korean Env. Sci. Soc. 8: 255-261 (1999)
  25. Kim SM. Surimi-alginate gels as affected by setting: a study based on mixture design and regression models. Food Res. Int. 36: 295-302 (2003) https://doi.org/10.1016/S0963-9969(02)00171-0
  26. Choi YJ, Lee HS, Cho YJ. Optimization of ingredients formulation in low grades surimi for improvement of gel strength. J. Korean Fish. Soc. 32: 556-562 (1999)
  27. Kocher PN, Foegeding EA. Microcentrifuge-based method for measuring water-holding of protein gels. J. Food Sci. 58: 1040-1046 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06107.x
  28. Park JW. Functional protein additives in surimi gels. J. Food Sci. 59: 525-527 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb05554.x
  29. Chung KH, Lee CM. Function of nonfish protein in surimi-based gel products. Korean J. Soc. Food Sci. 10: 146-150 (1994)