Antioxidative Activity of Heat Treated Licorice (Glycyrrhiza uralensis Fisch) Extracts

열처리한 감초추출물의 항산화활성

  • Woo, Koan-Sik (Department of Food Science and Technology, Chungbuk National University) ;
  • Jang, Keum-Il (Department of Food Science and Technology, Chungbuk National University) ;
  • Kim, Kwang-Yup (Department of Food Science and Technology, Chungbuk National University) ;
  • Lee, Hee-Bong (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • Published : 2006.06.01

Abstract

Antioxidative activity and physicochemical characteristics of heat-treated licorice extracted by ethyl-acetate (EtOAc) and ethyl-alcohol (EtOH) were evaluated at various treatment temperatures (110, 120, 130, 140, and $150^{\circ}C$), times (1, 2, 3, 4, and 5 hr), and moisture contents (10, 20, 30, 40, and 50%). Maximum extraction yields of EtOAc treated at $140^{\circ}C$, 2 hr, and 20% moisture content and EtOH extracts treated at $120^{\circ}C$, 2 hr, and 40% moisture content were 9.48 and 32.90%, whereas those of control were 3.74 and 14.60%, respectively. Highest total polyphenol content was obtained from 13.95 mg/g EtOH extract treated at $150^{\circ}C$, 3 hr, and 30% moisture content (control: 6.92 mg/g). Highest antioxidative activity $(IC_{50})$ was obtained from 0.32 g/L EtOAc treated at $140^{\circ}C$, 2 hr, and 20% moisture content (control: 0.57 g/L). Highest ascorbic acid equivalent antioxidant activity value of 2,112.61 mg ascorbic acid (AA) eq was obtained from EtOAc extract treated at $120^{\circ}C$, 2 hr, and 40% moisture content (control: 1,920.27 mg AA eq). Optimum heat treatment conditions were $130-140^{\circ}C$, 3 hr, and 30% moisture content.

감초를 처리온도, 처리시간 및 첨가수분함량을 변수로 하여 열처리한 다음 에틸아세테이트와 에탄올로 추출하여 성분 및 생리 활성 변화를 분석하고 반응표면분석으로 최적화 조건을 조사하였다. 에틸아세테이트 추출물의 추출수율은 $140^{\circ}C$, 2시간, 가수량 20%일 때 9.48%로 무처리구의 3.74% 보다 높았고, 에탄올 추출물의 경우는 $120^{\circ}C$, 2시간, 가수량 40%로 처리한 시료가 32.90%로 무처리구의 14.60% 보다 높았다. 총 폴리페놀 화합물의 함량은 열처리구가 무처리구보다 높았으며, 에탄올 추출물의 $150^{\circ}C$, 3시간, 가수량 30% 처리구가 1,391.51 mg/100 g로 무처리구의 6 692.23 mg/100 g 보다 높았다. 항산화활성$(IC_{50})$은 열처리구가 무처리구보다 낮았으며 에틸아세테이트 추출물 $140^{\circ}C$, 2시간, 가수량 20% 처리구에서 0.324 g/L로 무처리구의 0.573 g/L 보다 효과가 우수한 것으로 나타났다. 총항산화력(AEAC)은 모든 처리구에서 무처리구보다 높게 나타났는데 에틸아세테이트 추출물 $120^{\circ}C$, 2시간, 가수량 40%처리구에서 2,112.61 mg AA eq로 무처리구의 1,920.27 mg AA eq보다 높게 나타났다. 본 연구결과 감초의 항산화활성, 총 폴리페놀 함량 등을 증가시키기 위한 최적의 열처리 조건은 130 및 $140^{\circ}C$, 3시간, 가수량 30%로 나타났다.

Keywords

References

  1. Jung YA, Lee KJ, Kwun MJ, Row KH. Separation of glabridin from licorice by RP-HPLC. Korean J. Biotechnol. Bioeng. 18: 408-411 (2003)
  2. Tamir S, Eizenberg M, Somjen D, Izael S, Vaya J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J. Mol. Biol. 78: 291-298 (2001)
  3. Kang MH, Park CG, Cha MS, Seong NS, Chung HK, Lee JB. Component characteristics of each extract prepared by different extract methods from by-products of Glycyrrhizia uralensis. J. Korean Soc. Food Sci. Nutr. 30: 138-142 (2001)
  4. Shibata S, Inoue H, Iwata S, Ma RD, Yu LJ, Ueyama U, Takayasu J, Hasegawa T, Tokyda H, Nishino A. Inhibitory effect of licochalcone a isolated from Glycyrrhiza inflata root on inflammatory ear edema and promotion in mice. J. Planta Med. 57: 221-224 (1991) https://doi.org/10.1055/s-2006-960078
  5. Hayashi H, Hiraoka N, Ikeshiro Y, Yamamoto H. Organ specific localization of flavonoids in Glycyrrhiza glabra L. J. Plant Sci. 116: 233-238 (1996) https://doi.org/10.1016/0168-9452(96)04387-7
  6. Akamatsu H, Komura J, Asada Y, Niwa Y. Mechanism of antiinflammatory action of glycyrrhizin: effect on neutrophil functions including reactive oxygen species generation. J. Planta Med. 57: 119-121 (1991) https://doi.org/10.1055/s-2006-960045
  7. Hanato T, Aga Y, Shintani Y, Ito H, Okuda T, Yoshida T. Phenolic constituents of licorice part 9- Minor flavonoids from licorice. Phytochemistry 55: 959-963 (2000) https://doi.org/10.1016/S0031-9422(00)00244-2
  8. Vaya J, Belinky PA, Aviram M, Antioxidant constituents from licorice roots: isolation, structure elucidation and anti oxidative capacity toward LDL oxidation. Free Radic. Biol. Med. 23: 302-313 (1997) https://doi.org/10.1016/S0891-5849(97)00089-0
  9. Belinky PA, Aviram M, Fuhmlan B, Rosenblat M, Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis 137: 49-61 (1998) https://doi.org/10.1016/S0021-9150(97)00251-7
  10. Ishikawa S, Kato M, Tokuda T, Momoi H, Sekijima Y, Higuchi M, Yanagisawa N. Licence-induced hypokalemic myopathy and hypokalemic renal tubular damage in anorexia nervosa. Int. J. Eat. Disord. 26: 111-114 (1999) https://doi.org/10.1002/(SICI)1098-108X(199907)26:1<111::AID-EAT16>3.0.CO;2-U
  11. Belinky P, Aviram M, Mahmood S, Vaya J. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic. Biol. Med. 24: 1419-1429 (1998) https://doi.org/10.1016/S0891-5849(98)00006-9
  12. Aviram M. Modified forms of low density lipoprotein and atherosclerosis. Atherosclerosis 98: 1-9 (1993) https://doi.org/10.1016/0021-9150(93)90217-I
  13. Aviram M. Antioxidant-mediated inhibition of macrophage modifications of low density lipoprotein. Life Chem. Rep. 12: 69-78 (1994)
  14. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis J. Clin Invest. 88: 1785-1792 (1991) https://doi.org/10.1172/JCI115499
  15. Bergman PW. The coagulation of egg albumin by pressure. J. Biol. Chem. 19: 511 (1974)
  16. Park JH. Sun ginseng-a new processed ginseng with fortified activity. Food Ind. Nutr. 9: 23-27 (2004)
  17. Park JH. Development of sun ginseng as a new processed ginseng. pp. 69-72. In: Proceeding of the Korean Society of Crop Science Conference. May 2, Concord Hotel, Gyeongju, Korea. Korean Society of Crop Science, Suwon, Korea (2002)
  18. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006) https://doi.org/10.1016/j.foodchem.2005.08.004
  19. Turkmen N, Sari F, Velioglu YS. The effect of cooking methods total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93: 713-718 (2005) https://doi.org/10.1016/j.foodchem.2004.12.038
  20. Dewanto V, Xianzhong W, Liu RH. Processed sweet com has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  21. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1203 (1958)