Physicochemical Properties of Brown Rice Flours Produced under Different Drying and Milling Conditions

제조조건에 따른 현미쌀가루 품질특성

  • Published : 2006.08.01

Abstract

The physicochemical properties of brown rice flours produced under different drying and milling conditions were investigated. Moisture contents of hot-air dried, microwave dried and zet-milled brown rice flours (BrWZH) were 10.7%,13.7% and 8.0%-8.6%, respectively. Water absorption indices (WAI) and water soluble indices (WSI) of roll-milled brown rice flours (BrWRH) were lower (0.40-0.59 g/g; 0.7-3.0%) than those of zet-milled brown rice flours (0.58-0.79 g/g; 4.0-7.3%). Zet-milled brown rice flours had higher Hunter L values and more damaged starch (94.1-96.8; 28.2%) compared to roll-milled brown rice flours (91.3-91.9: 15.5%). The percentage of damaged starch and L values of brown rice flours increased as particle size of brown rice flours decreased. Roll-milled polished rice flour (Control) had the highest L value and lowest amount of damaged starch (97.1; 8.2%). Control, BrWRH, BrWZH, and ultrafine brown rice flour (HBrZMU) had peak viscosity values of 321, 255, 221, and 162 RVU, respectively and trough viscosity values of 217, 185, 175, and 113 RVU, respectively. Peak and trough viscosity (Rapid Visco Analyzer; RVA) properties of rice floors decreased as the particle size of rice flours decreased. HBrZMU demonstrated a higher onset temperature $(61.1^{\circ}C)$ compared to control $(54.8^{\circ}C)$ by differential scanning calorimetric (DSC). Crystal melting enthalpy $({\Delta}H)$ of control and brown rice flours were 10.4 J/g and 6.1-8.7 J/g, respectively. Results of this study suggested that physicochemical properties of brown rice flours were closely related to their particle size.

본 연구에서는 제분기, 건조방법별 등 다양한 조건별로 현미쌀가루 제조하여 각 쌀가루별 품질특성을 조사하였다. 건조조건에 따른 roll mill 제분한 현미쌀가루의 수분함량은 열풍건조 10.7% 마이크로파건조 13.7%로 측정되었다. 대조구인 백미쌀가루의 수분함량은 10.0%였다. Zet mill 분쇄 후 쌀가루의 수분함량은 8.0-8.6%로 측정되었다. WAI는 전분손상도가 높을수록 흡수되는 수분의 양이 증가하여 전분손상도가 가장 높은 Zet mill로 분쇄한 현미쌀가루가 0.58-0.79g/g으로 높았고, 전분손상도가 낮은 roll mill 분쇄한 대조구와 BrWRH 쌀가루가 각각 0.45, 0.40g/g으로 낮은 값을 나타내었다. WSI 역시 WAI와 같이 전분손상도가 증가할수록 증가하는 경향을 나타내었고 입자크기가 감소함에 따라 증가하였다. 대조구 백미 쌀가루 L, a, b는 97.1, -0.4, 4.2로 측정되었고, 현미쌀가루는 분쇄과정에서 생성된 미강층 때문에 L값은 대조구보다 낮고 반면에 b값은 높은 결과를 나타내었다. 제분방법에 따른 L값, b값은 roll mill로 분쇄한 현미쌀가루의 L, b값은 각각 91.3-91.9, 9.2-10.1이었고, zet mill로 제분한 현미쌀가루의 L, b값은 각각 94.1-96.8, 5.8-6.8로 측정되어 입자크기가 작을수록 L값은 증가하였고, b값은 감소하였다. 전분손상도는 대조구가 8.2%로 가장 낮았고, 마이크로파 건조 시 열품건조보다 4-10%정도 높은 전분손상도 값을 보였다. 제분기 종류에 따른 전분손상도는 roll mill 15.5%, zet mill 28.2% 그리고 micro mill 51.9%로 입자크기가 작을수록 전분손상도는 증가하였다. RVA 측정결과 대조구 호화개시온도는 $65.4^{\circ}C$로 가장 낮은 값을 나타내었다. 제분방법에 따른 대조구, BrWRH, BrWZH, HBrZMU 쌀가루의 호화특성 측정결과 최고점도(peak), 최저점도(trough)는 각각 321, 255, 221, 162 RVU와 217, 185, 175, 113 RVU로 측정되어 입자크기가 작아질수록 감소하였다 또한 호화액의 안전성을 나타내는 breakdown 값은 대조구가 105 RVU, 현미 쌀가루가 37-96 RVU로 측정되어다 DSC 분석결과 호화엔탈피$({\Delta}H)$는 대조구가 10.4 J/g으로 가장 높은 값이었고, 가장 작은 입도분포를 나타낸 HBrZMU가 6.1 J/g으로 가장 낮은 값을 보였다. 본 연구결과 가공제품으로 현미쌀가루 이용 시 침지, 건조방법 보다는 제분방법 즉 입도분포가 현미쌀가루의 품질특성에 않은 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Slavin J, Jacobs D, Marquart L. Whole-grain consumption and chronic disease. Prot. Mech. Nutr. Cancer 27: 14-21 (1997) https://doi.org/10.1080/01635589709514495
  2. Dey PM. Brinson K. Plant cell walls. Adv. Carbohyd. Chem. Biochem. 42: 265-382 (1984) https://doi.org/10.1016/S0065-2318(08)60127-4
  3. Juliano BO, Bechtel DB. The rice grain and its gross composition. In: Rice: Chemistry and Technology. The American Association of Cereal Chemists, St. Paul, MN, USA. pp. 17-58 (1985)
  4. Choe JS, Ahn HH, Nam HJ. Compaison of nutritional composition in korean rices. J. Korean Soc. Food Sci. Nutr. 31: 885-892 (2002) https://doi.org/10.3746/jkfn.2002.31.5.885
  5. Kim SR, Ahn JY, Ha TY. Various properies and phenolic acid contents of rice and rice brans with different milling fractions. Korean J. Food Sci. Technol. 36: 930-936 (2004)
  6. Choi CR, Kim JO, Lee SK, Shin MS. Properties of fractions from waxy rice flour classified with particle size. Food Sci. Biotechnol. 10: 54-58 (2001)
  7. Kum JS, Lee SH, Lee HY, Kim KH, Kim YI. Effects of different milling methods on physicochemical properties and products. Korean J. Food Sci. Technol. 25: 546-551 (1999)
  8. Kim SK, Bang JB. Physicochemical properties of rice affected by steeping conditions. Korean J. Food Sci. Technol. 28: 1026-1032 (1996)
  9. AOAC. Official Methods of Analysis of AOAC Int. 16th ed. Association of Official Analytical Chemists, Washington DC, USA (1995)
  10. Anderson RA. Water absorption and solubility and amylograph characteristics of roll-cooked small grain products. Cereal Chem. 59: 265-271 (1982)
  11. Boyaci IH, Williams PC, Koksel H. A rapid method for the estimation of damaged starch in wheat flours. J. Cereal Sci. 39: 139-145 (2004) https://doi.org/10.1016/j.jcs.2003.09.002
  12. Damir AA. Comparative studies on physicochemical properties and micro-structure of raw and parboiled rice. Food Chem. 16: 1-14(1985) https://doi.org/10.1016/0308-8146(85)90015-9
  13. Nishita KD, Bean MM. Grinding methods; Their impact on rice flour properties. Cereal Chem. 59: 46-50 (1982)
  14. Kum JS, Lee BY. The effect of the varieties and particle size on the properties of rice flour. Korean J. Food Sci. Technol. 31: 1542-1548 (1999)
  15. Meuser F, Klingler RW, Niediek EK. Characterization of mechanically modified starch. Starch 30: 376-384 (1978) https://doi.org/10.1002/star.19780301105
  16. Multon JL, Bizot H, Savet B. Water absorption in cereal foods and water activity measurement in cereals for food and beverages. Academic press Inc., New York, NY, USA. pp. 97-101 (1980)
  17. Lee YT, Seog HM, Cho MK, Kim SS. Physicochemical properties of hull-less barley flours prepared with different grinding mills. Korean J. Food Sci. Technol. 28: 1078- 1083 (1996)
  18. Kim YJ, Kim SS. Comparison of size distribution of rice flour measured by microscope, sieve, coulter counter, and aerodynamic methods. Korean J. Food Sci. Technol. 24: 184-187 (1994)
  19. Sandstedt RM, Mettern PJ. Quantitative determination in flour. Cereal Chem. 37: 379-389 (1960)
  20. McPermott EE. The rapid non-enzymic determination of damaged starch in flour. J. Sci. Food Agric. 31: 405-413 (1980) https://doi.org/10.1002/jsfa.2740310411
  21. Yoon SH, Kim SK. Physicochemical properties of rice differing in milling degrees. Food Sci. Biotechnol. 13: 57-62 (2004)
  22. Beleia A, Varriano-Marstion E, Hoseney RC, Characterization of starch from pearl millets. Cereal Chem. 57: 300-303 (1980)
  23. Schoch TJ, Maywald EC. Starches and low molecular weight carbohydrates from chick pea and horse gram flours. Cereal Chem. 52: 334-347 (1975)
  24. Byun KW. Comparison of gelatinization properties of japonica and tongil brown rice starches. J. Korean Soc. Food Nutr. 21: 428-435 (1992)
  25. Hyun CK, Park KH, Kim YB, Yoon IH. Dfferential scanning calorimetry of rice starch. Korean J. Food Sci. Technol. 20: 331-337 (1988)
  26. Han JG, Kim K, Kang KJ, Kim SK, Lee SK. Physicochemical properties of brown rice during storage in laminated film pouches. Korean J. Food Sci. Technol. 28: 714-719(1996)
  27. Choi HW, Koo HJ, Kim CT, Hwang SY, Kim DS, Choi SW, Hur NY, Baik MY. Physicochemical properties of hydroxypropylated rice starches. Korean J. Food Sci. Technol. 37: 44-49 (2005)
  28. Chun HS, You JE, Kim IH, Cho JS. Comparative antimutagenic and anti oxidative activities of rice with different milling fractions. Korean J. Food Sci. Technol. 31: 1371-1377 (1999)
  29. Kum JS, Choi BK, Lee HY, Park JD. Physicochemical properties of germinated brown rice. Korean J. Food Preserv. 11: 182-188 (2004)
  30. Choi JS, Ahn HH, Nam HJ. Comparison of Nutritional Composition in Korean rice. J. Korean Soc. Food Sci. Nutr. 31: 885-892 (2002) https://doi.org/10.3746/jkfn.2002.31.5.885