Antioxidative, Antimicrobial and Cytotoxic activities of Fagopyrum esculentum $M{\ddot{o}}ench$ Extract in Germinated Seeds

발아 메밀 추출물의 항산화.항균활성 및 세포독성

  • Hwang, Eun-Ju (Phyto Care Tech Co. Ltd.) ;
  • Lee, Sook-Young (Biology Research Center for Industrial Accelerators, Dongshin University) ;
  • Kwon, Su-Jung (Biology Research Center for Industrial Accelerators, Dongshin University) ;
  • Park, Min-Hee (Biology Research Center for Industrial Accelerators, Dongshin University) ;
  • Boo, Hee-Ock (Biology Research Center for Industrial Accelerators, Dongshin University)
  • 황은주 ((주)식물보호기술) ;
  • 이숙영 (동신대학교 산업용가속기이용생물연구센터) ;
  • 권수정 (동신대학교 산업용가속기이용생물연구센터) ;
  • 박민희 (동신대학교 산업용가속기이용생물연구센터) ;
  • 부희옥 (동신대학교 산업용가속기이용생물연구센터)
  • Published : 2006.02.28

Abstract

This research was conducted to investigate the possibilities of usage of germinated-buckwheat (Fagopyrum esculentum $M{\ddot{o}}ench$) by examining antioxidative, antimicrobial and cytotoxic effects of extracts from different germinated root length of buckwheat. Antioxidant activity $(RC_{50})$ was shown higher in extracts of non-germinated seed $(50.41\;{\mu}g/mL)$ and root length 10 mm $(80.57\;{\mu}g/mL)$, 2 mm $(93.77\;{\mu}g/mL)$, 5 mm $(107.09\;{\mu}g/mL)$ than BHT $(163.96\;{\mu}g/mL)$ as a synthetic antioxidant. In antimicrobial activity, non-germinated and germinated seeds were formed inhibitory zone against S. aureus $(4{\sim}10\;mm)$, P. aeruginosa $(2{\sim}9\;mm)$ at the concentrations of $10{\sim}40\;mg/mL$ but B. subtilis, E. coli and S. typhimurium were not apparent antimicrobial activity. Extracts of germinated seed also decreased their antimicrobial activity compared to non-germinated seed extract. In addition, the growth of Calu-6 was inhibited of both 5 mm root length germinated and non-germinated seeds $(800\;{\mu}g/mL)$ as 95.12% and 87.15%, respectively, but these did not show any influence on cytotoxic effect against MCF-7 and Caco-2 cell lines. Extracts of 2 mm and 5 mm germinated seeds were also inhibited against Calu-6 and SNU-601 cell lines.

식물에 존재하는 천연물질은 예로부터 건강증진 및 질병치료를 위하여 다양하게 이용되어 왔고, 실제로 morphine, ephedrine 등과 같이 천연물에서 유래한 의약품이 현재에도 질병치료에 널리 응용되고 있다. 메밀 (Fagopyrum esculentum $M{\ddot{o}}ench$)의 proanghocyanidine, rutin, lignan 등은 항산화, 항균활성 및 항암효과를 나타내는 성분으로 보고 (Cassidy, 1996; Rym of al., 1996)되었다. 따라서 본 실험에서는 메밀의 기능성 물질의 확보와 가공을 통한 원료 고부가가치 창출을 목표로 국내산 메밀을 발이 길이별로 추출물을 제조하여 식품성 성분의 생리활성 인자를 탐색할 목적으로 각 길이별 추출물로 항산화활성 및 항미생물 활성을 측정하였다. 먼저, 항산화 활성에서 DPPH의 50%를 환원 시키는데 필요한 시료의 양$(RC_{50})$은 무발아에서 $50.41\;{\mu}g/mL$, 발아길이 10 mm에서 $80.57\;{\mu}g/mL$, 발아길이 2 mm에서 $93.77\;{\mu}g/mL$, 발아길이 5 mm에서 $107.09\;{\mu}g/mL$순으로 천연항산화제인 Vit. C $5.98\;{\mu}g/mL$보다는 약하지만, 합성항산화제인 BHT $163.96\;{\mu}g/mL$보다는 월등히 뛰어난 라디칼 소거능이 확인되었다. 발아 길이별 각 추출물의 항미생물 활성은 최고농도 $40\;mg/mL$에서 그람양성균인 S. aureus의 투명저지대의 직경이 4{\sim}10\;mm$ 였고, 그람음성균인 P. aeruginosa는 $2{\sim}9\;mm$의 범위에서 증식이 억제되어 항균활성은 비교적 높은 것으로 판단되었으며, 그 외의 균주에서는 본 실험에서 사용한 첨가농도로는 완전한 증식억제 효과가 나타나지 않았다. 무발아 시료와 비교할 때 발아가 진행되면서 항균력이 떨어졌다. 암세포 증식 억제효과는 최고농도 $800\;{\mu}g/mL$에서 Calu-6 세포의 경우 발아 길이 5 mm 시료에서 95.12%, 무발아 추출물은 87.15%의 높은 암세포 생육억제활성을 나타내었다. 동일 농도에서 발아 길이 5 mm인 시료의 경우 SNU-601에 대하여 85.33%의 억제효과를 보였다. 그러나 유방암세포인 MCF-7과 대장암세포인 Caco-2의 경우 최대농도의 시료를 첨가한 경우에도 세포증식을 억제하지 못하였다. 메밀의 발아 길이별 $IC_{50}$값을 살펴보면, Calu-6에서 발아 길이 5 mm 추출물에서 $301.06\;{\mu}g/mL$, SNU-601에서 2 mm 추출물이 $510.20\;{\mu}g/mL$로 탁월한 효과를 보였다. 즉, Calu-6와 SNU-601 세포주에 대한 $IC_{50}$은 대조군에 비해 발아에 의하여 세포독성 효과를 증가되었지만, MCF-7와 Caco-2에 대한 항암효과는 없음을 알 수 있었다.

Keywords

References

  1. Bauer AW, Kibby MM, Sherris JC, Turck M (1996) Antibiotic suscep-tibility testing by standardized single disc method. AM J. Clin Pathol 45:493-496
  2. Braud-Wiliams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Technology. 28:25-30
  3. Cassidy A (1996) Physiological effects of phytoestrogens in relation to cancer and other human health risks. Proc Sym On Physiologically Active Substances in Plant Foods. Cambridge University Press, London
  4. Cho BM, Yoon SK, Kim WJ (1985) Changes in Amino Acids and Fatty Acids Composition during Germination of Rapeseed. Korean J. Food Sci. Technol 17(5):371-376
  5. Choe M, Kim JD, Park KS, Oh SY, Lee SY (1991) Effect of Buckwheat Supplementation on Blood Glucose Levels and Blood Pressure in Rats. Korean J. Food Science and Nutrition. 20(4):300-305
  6. Colmenarse De Ruiz AS, Bressani R (1990) Effect of germination on the chemical composition and nutritive value of amaranth grain. Cereal Chem. 67(6):519
  7. Dnizot FD, Rita L (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol Methods 22:271-277
  8. Dorrell DG (1971) Fatty acid composition of buckwheat seed. J.A.O.C.S. 48, 693 https://doi.org/10.1007/BF02638522
  9. Han WS (2005) Isolation of Antimicrobial Compounds from Aralia cordata Thunb. Extract. Korean J. Medicinal Crop Sci. 13(4):182-185
  10. Havsteen B (1983) Flavonoids a class of natural products of high pharmacological potency. Biochem. Pharm. 32:1141 https://doi.org/10.1016/0006-2952(83)90262-9
  11. Hsu K, Leung HK, Finney PL, Morad MM (1980) Effect of germination on nutritive value and baking properties of dry peas, lentils, and faba beans. J. Food Sci. 45:87 https://doi.org/10.1111/j.1365-2621.1980.tb03877.x
  12. Ikeda K, Kusano T (1983) Purification and properties of the trypsin inhibitors from buckwheat seed. Agric. Biol, Chem. 47(7):1481 https://doi.org/10.1271/bbb1961.47.1481
  13. Ikeda K, Arioka K, Kujii S, Kusano T, Oku M (1984) Effect on buckwheat protein quality of seed germination and changes in trypsin inhibitor content. Cereal Chem, 61(3):236
  14. Kang DZ, Um JB, Lee SK, Lee JH (2003) Content of Rutin and Monacolin K in the Red Buckwheat Fermented with Monascus ruber. Korean J. Food Sci. Technol. 35(2):242-245
  15. Kim JS, Park YJ, Yang MH, Shim JW (1994) Variation of rutin content in seed and plant of buckwheat germplasms (Fagopyrum esculentnm Moench). Korean J. Breed. 26(4):384-388
  16. Kim SJ (2005) Antimicrobial Activities of Lactic Acid Bacteria Isolated from Mul-Kimchi. Korean J. Food Preserv. 12(3):263-266
  17. Koh MS (2004) Antimicrobila activity of Saururus chinensis Baill extract. J. Korean Soc. Food Sci. Nutr. 33(7):1098-1105 https://doi.org/10.3746/jkfn.2004.33.7.1098
  18. Ko MS, Park BH (1983) Changes of Sugar Contents of Mung Bean during Germination. Korean J. Food Science and Nutrition. 12(3):236-239
  19. Kwak CS, Lim SJ, Kim SA, Park SC, Lee MS (2004) Antioxidative and antimutagenic effects of korean buckwheat, sorghum, millet and jpb's tears. J. Korean Soc. Food Sci. Nutr. 33(6):921-929 https://doi.org/10.3746/jkfn.2004.33.6.921
  20. Kwon TB (1994) Changes in rutin and fatty acids of buckwheat during germination. Korean J. Food Science and Nutrition. 7(2): 124-127
  21. Lee GD, Yoon SR, Kim JO, Hur SS, Seo KI (2004) Monitoring on the Tea with Steaming and Drying Process of Germinated Buckwheat. Korean J. Food Science and Nutrition. 33(1):212-217 https://doi.org/10.3746/jkfn.2004.33.1.212
  22. Lee JH, Chang YI, Chang KS (2000) Effect of Gamma Irradiations on Physical Properties of Buckwheat Starch. Food Engineering Progress. 4(2): 110-119
  23. Lee JS, Maeng YS, Ju JS (1992) The effect of buckwheat supplement on metabolic status of streptozotocin-induced diabetic rats, Annual Report of Korea Nutr. Hallym Univ. 9, 21
  24. Lee JS, Park SJ, Sung KS, Han CK, Lee MH, Jung CW, Kwon TB (2000) Effects of germinated-buckwheat on blood pressure, plasma glucose and lipid levels of spontaneously hypertensive rats. Korean J. Food Sci. Technol. 32(1):206-211
  25. Lee MH, Son HS, Choi OK, Oh SK, Kwon TB (1994) Changes in physico-chemical properties and mineral contents during buckwheat germination. Korean J. Food Science and Nutrition. 7(4):267-273
  26. Lee MH, Woo SJ, Oh SK, Kwon TB (1994) Changes in contents and composition of dietary fiber during buckwheat germination. Korean J. Food Science and Nutrition. 7(4):274-283
  27. Lee OH, Jung SH, Son JY (2004) Antimicrobial activity of clove extract by extraction solvents. J. Korean Soc Food Sci Nutr. 33(3):494-499 https://doi.org/10.3746/jkfn.2004.33.3.494
  28. Macrae R, Robinson RK, Sadler MJ (1993) Buckwheat, Encyclopaedia of food science, food technology and mutiation. 1:516
  29. Maeng YS, Park HK, Kwon TB (1990) Analysis of Rutin Contents in Buckwheat and Buckwheat Foods. Korean J. Food Sci. Technol 22(7):732-737
  30. Marshall HC, Proneranz Y (1982) Description, breeding, production and utilization. Adv. Cereal Sci. Technol., 5:127
  31. Marshall HG, Pomeranz Y, Chapter G (1982) Buckwheat description, breeding, production and utilization. In Volume V, Advances in cereal and technology, Am. Ass. of Cereal Chem. 157
  32. Mazza G (1988) Lipid content and fatty acid composition of buckwheat seed. Cereal Chem. 65(2):122
  33. Nakamura S, Kato A, Kobayashi K (1991) New antimicrobial characteristics of lysozyme-dextran conjugate. J. Agric Food Chem. 39:647-650 https://doi.org/10.1021/jf00004a003
  34. Oh DH, Lee MK, Park BK (1999) Antimicrobial activites of commercially available tea on the harmful foodborne organism. J. Korean Soc. Food Sci. Nutr. 28:100-106
  35. Ohara J, Ohinata H, Muramatsu N, Oike T, Matsuhashi T (1989) Enzymatic degradation of rutin in proressing of buckwheat noddles, Nippon Shakuhin Kogyo Gakkaishi. 36(2):121 https://doi.org/10.3136/nskkk1962.36.2_121
  36. Ohara T, Ohinata H, Muramatsu N, Matsuhashi T (1989) Determination of rutin in buckwheat foods by high performance liquid chromatography. Nippon Shakuhin Kogyo Gakkaishi. 36(2): 114 https://doi.org/10.3136/nskkk1962.36.2_114
  37. Park CG, Bang KH, Lee SE, Cha MS, Sung JS, Park HW, Seong NS (2001) Antibacterial activity from medicinal plant extracts on the Staphylococcus aureus. Korean J. Medicinal Crop Sci. 9(4):251-258
  38. Rym KH, Eo SK, Kim YS, Lee CK, Han SS (1996) Antimicrobial activity and acute toxicity of natural rutin. Kor. J. Pharmacogn.27(4):309-315
  39. Soda T, Kato J, Kiribuchi S, Aoki H (1981) Properties of buckwheat protein from the standpoint of food processing. Nippon Shokuhin Kogyo Gakkaishi. 28(6):297 https://doi.org/10.3136/nskkk1962.28.6_297
  40. Wee JH, Moon JH, Park KH (2004) Isolation and Identification of Pratension with Antimicrobial Activities from the Peanut Shells. Korean J. Food Sci. Technol. 36(4):643-647
  41. 김영순 (2001) 메밀(Fagopyrum esculenturm Moench) 잎의 성장 단계별 아미노산 함량의 변화. 보건과학논집. 27(1):19-23
  42. 홍문화 (1990) 허준의 동의보감, 도서출판. p. 417