Effect of Aceton Extract from Styela Clava on Oxidative DNA Damage and Anticancer Activity

미더덕 아세톤 추출물이 산화적 DNA 손상억제 및 암세포 독성에 미치는 영향

  • Seo, Bo-Young (Department of Food and Nutrition, Kyungnam University) ;
  • Jung, Eun-Sil (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Kim, Ju-Young (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Hae-Ryong (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Lee, Seung-Cheol (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Eun-Ju (Department of Food and Nutrition, Kyungnam University)
  • 서보영 (경남대학교 식품영양학과) ;
  • 정은실 (경남대학교 식품생명학과) ;
  • 김주영 (경남대학교 식품생명학과) ;
  • 박해룡 (경남대학교 식품생명학과) ;
  • 이승철 (경남대학교 식품생명학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Published : 2006.09.30

Abstract

Styela clava (also called as rough sea squirt or leathery tunicate) is regarded as native to the northwest Pacific region including Korea and widely distributed in parts of northwestern Europe, North America and Australia. To evaluate Styela clava as a potential bioactive agent, the antioxidant activity of aceton extracts from Styela clava (whole, substance and tunic) was tested by measuring inhibitory effect of $H_2O_2$ induced DNA damage using comet assay. Also, anticancer activity on human colon cancer cell (HT-29) was investigated by MTT reduction assay. The $200\;{\mu}M$ $H_2O_2$ induced DNA damage was inhibited with Styela clava aceton extract in dose dependent manner in human leukocytes. The maximum inhibition was by 62.8, 62.1 and 78.3% at the concentration of $50\;{\mu}g/ml$ of whole, substance and tunic extracts, respectively. The aceton extracts from S. clava were also found to inhibit the growth of human colon cancer cell. The cell proliferation rates decreased to 26.9, 30.6 and 12.0% at the concentration of $500\;{\mu}g/ml$ of whole, substance and tunic extracts, respectively. These results support that aceton extracts from S. clava may be a potential candidate as a possible antimutagenic and chemotherapeutic agent.

미더덕(Styela clava)은 척색동물문 미색동물아문에 속하는 해양생물로서, 독특한 향과 맛으로 인해 식품에 널리 이용되고 있다. 본 연구에서는 미더덕의 생리활성물질로의 활용가능성을 탐색하고자 미더덕을 전체, 살 및 껍질 부분으로 나누어 아세톤으로 추출한 뒤 산화적 DNA 손상억제 및 항암 활성을 측정하였다. 미더덕 각 부위 추출물을 5, 10, $50\;{\mu}g/ml$의 농도로 백혈구에 처리한 후 200\;{\mu}M의 $H_2O_2$로 산화적 스트레스를 유발하여 DNA 손상 억제 정도를 검증하기 위해 comet assay를 실시하였다. 미더덕 전체 추출물을 5, 10, $50\;{\mu}g/ml$의 농도로 백혈구에 처리했을 때 손상된 DNA tail 부분의 DNA 함량을 측정한 % fluorescence in tail이 26.9, 27.0, 23.8%로 63.9%인 $H_2O_2$ 처리 양성대조구에 비해 유의적으로 감소하였으며 미더덕살 추출물의 경우, 5, 10, $50\;{\mu}g/ml$ 처리시 농도에 의한 효과 차이는 볼 수 없었지만 양성대조구에 비해 유의적으로 DNA 손상정도가 감소하였다. 미더덕 껍질 추출물의 경우 같은 농도로 처리했을 때 각각 농도 의존적이며 유의적으로 DNA 손상정도가 감소하였다. 인간 대장암 유래의 세포주 HT-29의 성장억제 효과에 조사하기 위해 미더덕 부위별 아세톤 추출물을 10, 50, 100, $500\;{\mu}g/ml$의 농도로 각각 처리한 뒤 MTT reduction assay 방법으로 측정한 결과, 각 추출물에 대해 전체적으로 농도의존적으로 암세포 성장 억제효과가 증가되었다. 전체, 살, 껍질 부위별 추출물을 $100\;{\mu}g/ml$의 농도로 첨가하였을 때 각각 90.5%, 82.0%, 75.2%로 비교적 낮은 활성을 보였지만, $500\;{\mu}g/ml$로 처리했을 때 각각 26.9%, 30.6%, 12.0%로 급격히 활성이 증가하는 것을 볼 수 있었다. 특히 껍질 부분의 아세톤 추출물이 강한 DNA 손상억제 및 암세포 성장 억제 효과를 보임을 알 수 있었다.

Keywords

References

  1. Surh, Y. J. (1999) Molecualr mechanical of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res. 428, 305-327 https://doi.org/10.1016/S1383-5742(99)00057-5
  2. Johnson, I. T., Williamson, G. and Musk S. R. R. (1994) Anticarcinogenic factors in plant food: a new class of nutrients. Nutr. Res. Rev. 7, 175-204 https://doi.org/10.1079/NRR19940011
  3. Garcia-Fernandez, L. F., Fernando, R. and Sanchex-Puelles, J. M. (2002) The marine Pharmacy: New antitumoral compounds from the sea. Pharmaceutical News 9, 495-501
  4. Grever, M. C. B. (2001) Cancer drug discovery and development. In Cancer: Principles and Practice of Oncology, De Vita, V. H. S., and Rosenberg, S. A. (eds) pp. 328-339. Lippincott-Raven, Philadelphia
  5. Rosenthal J. (1996) Investing in biological diversity. Proceedings of The Cairns conference. Cairns. Australia: OECD
  6. Park, J. C. (1996) Screening of marine natural products on inhibitory effect of the formation of lipid peroxidation. Korean J. parmacogen. 27, 117-122
  7. Amador, M. L., Jimeno, J., Paz-Ares, L., Cortes-Funes, H. and Hidalgo, M. (2003) Progress in the development and acquisition of anticancer agents from marine sources. Annals of Oncology 14, 1607-1615 https://doi.org/10.1093/annonc/mdg443
  8. Mayer, A. M. S. and Gustafson, K. R. (2003) Marine pharmacology in 2000: antitumor and cytotoxic compounds. Int. J. Cancer 105, 291-299 https://doi.org/10.1002/ijc.11080
  9. Kim, J. J., Kim, S. J., Kim, S. H., Park, H. R. and Lee, S. C. (2005) Antioxidant and anticancer activities of extracts from Styela plicata. J. Korean Soc. Food Sci. Nutr. 34, 937-941 https://doi.org/10.3746/jkfn.2005.34.7.937
  10. Lee, E. H. (1985) Lipid components of sea squirt, Halcyntria roretzi, and Mideuduck, Styela clava. Korean. J. Food Sci. Tec. 17, 289-294
  11. Jo, Y. G. (1978) The sterol composition of Styela clava. Kor. Fish. Soc. 11, 97-101
  12. Lee, E. H. (1975) Free amino acid content in the extract of mideuduck, Styela clava. Bull. Korean Fish Soc. 8, 177-180
  13. Lee, K. H.. (1995) Seasonal variations of nutrients in warty sea squirt (Styela clava). Food Sci. Nutr. 24, 268-273
  14. Ahn, S. H. (2003) Extraction of glycosaminoglycans from Styela clava tunic. Biotechnol. Bioproc. Eng. 18, 180-185
  15. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C. and Sasaki, Y. F. (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35, 206-221 https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  16. Singh, P. N. McCoy, M. T., Tice R. R. and Schneider, E. L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184-191 https://doi.org/10.1016/0014-4827(88)90265-0
  17. Fish, B. (1984) Clinical trials for the evaluation of cancer therapy. Cancer Res. 54, 609-615
  18. Goodman, G. Y., Yen, Y. P., Cox, TC. and Crowlny, J. (1987) Effect of verapamil on in vitro cytotoxicity of adriamycin and vinblastine in human tumor cells. Cancer Res. 47, 2295-2311
  19. Ostling, O. and Johanson, K. J. (1984) Microgel electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123, 291-298 https://doi.org/10.1016/0006-291X(84)90411-X
  20. Betti, C., Davini, T., Giannessi, L., Loprieno, N. and Barale, R. (1994) Microgel electorphoresis assay (comet assay) and SCE analysis in human lymphocytes from 100 normal subjects. Mutat. Res. 307, 323-333 https://doi.org/10.1016/0027-5107(94)90306-9
  21. Rao, G. V., Kumar, G. S. and Ahuja, Y. R. (1997) Single cell gel electrophoresis on peripheral blood leukocytes of patients with oral squamous cell carcinoma. J. Oral Pathol. Med. 26, 377-380 https://doi.org/10.1111/j.1600-0714.1997.tb00234.x
  22. Alapetite, C., Thirion, P., de la Rochefordiere, A., Cosset, J. M. and Moustacchi E. (1999) Analysis by alkaline comet assay of cancer patients with severe reactions to radiotherapy: defective rejoining of radioinduced DNA strand breaks in lymphocytes of breast cancer patients. Int. J. Cancer 24, 83-90
  23. Muller, M. R., Buschfort, C., Thomale, J., Lensing, C., Rajewsky, M. F. and Seeber S. (1997) DNA repair and cellular resistance to alkylating agents in chronic lymphocytic leukemia. Clin. Cancer Res. 3, 2055-2061
  24. Vaghef, H., Nygren, P., Edling, C., Bergh, J. and Hellman B. (1997) Alkaline single-cell gel electrophoresis and human biomonitoring for genotoxicity: a pilot study on breast cancer patients undergoing chemotherapy including cyclophosphamide. Mutat. Res. 395, 127-138 https://doi.org/10.1016/S1383-5718(97)00157-5
  25. Matsuno, T., Ookubo, M. and Komori, T. (1985) Carotenoids of tunicates. III. The structural elucidation of two new marine carotenoids, amarouciaxanthin A and B. J. Nat. Prod. 48, 606-613 https://doi.org/10.1021/np50040a015
  26. Cotelle, N., Moreau, S., Bernier, J. L., Catteau, J. P. and Henichart, J. P. (1991) Antioxidant properties of natural hydroquinones from the marine colonial tunicate Aplidium californicum. Free Radic. Biol. Med. 11, 63-68 https://doi.org/10.1016/0891-5849(91)90188-9
  27. Choi, B. D., Kang, S. J., Choi, Y. J., Youm, M. G. and Lee, K. H. (1994) Utilization of Ascidian (Halocynthia roretzi) Tunic. Bull. Korean Fish Soc. 27, 344-350
  28. Rinehart, K. L. (2000) Antitumor compounds from tunicates. Med. Res. Rev. 20, 1-27 https://doi.org/10.1002/(SICI)1098-1128(200001)20:1<1::AID-MED1>3.0.CO;2-A
  29. Schwartsmann., G., da Rocha, A. B., Berlinck, R. G. S. and Jimeno, J. (2001) Marine organisms as a source of new anticancer agents. Lancet oncol. 2, 221-225 https://doi.org/10.1016/S1470-2045(00)00292-8