Effects of Allium Vegetable Intake on Levels of Plasma Glucose, Lipid and Minerals in Streptozotocin Induced Diabetic Rats

Allium속 식용식물의 섭취가 Streptozotocin 유발 당뇨 흰쥐의 혈당, 지질 및 무기질 수준에 미치는 영향

  • Ahn, Young-Mi (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University) ;
  • Lim, Sook-Ja (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University) ;
  • Han, Hye-Kyoung (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University) ;
  • Choi, Sung-Sook (Department of Foods & Nutrition, College of Natural Sciences, Duksung Women's University)
  • 안영미 (덕성여자대학교 자연과학대학 식품영양학과) ;
  • 임숙자 (덕성여자대학교 자연과학대학 식품영양학과) ;
  • 한혜경 (덕성여자대학교 자연과학대학 식품영양학과) ;
  • 최성숙 (덕성여자대학교 자연과학대학 식품영양학과)
  • Published : 2006.07.31

Abstract

The effects of Allium vegetables on blood glucose levels and lipid metabolism in streptozotocin (S12) induced diabetic rats were investigated. Diabetes mellitus was induced by S1'2 injection (45 mg/kg 5.w.) into the tail vein. Sprague-Dawley rats weighing $220\;{\pm}\;10\;g$ were randomly assigned to 7 groups: normal, S1'2-control and five Allium groups (Allium cepa, Allium fistulosum, Allium sativum, Allium tuberosum and Allium victorialisL Normal and S12control groups were fed an AIN-93 diet and five Allium groups were fed a modified diet containing. 10% Allium powder each for 4 weeks. Body weight, diet intake, food efficiency ratio (FER) and organ weights- were monitored. Activities of aspartate aminotransferase (AST) & alanine aminotransferase (ALT) were observed: Plasma lev~ls of glucose, free fatty acid, triglyceride and HDL-cholesterol were analyzed. Levels of glycogen, cholesterol and triglyceride in liver were determined. Levels of malondialdehyde (MDA) in liver, lung, kidney, and pancreas were assayed. The hepatic contents of chromium (Cr) , iron (Fe), zinc (Zn) and manganese (Mu) were measured. The Allium sativum group had weight gain and suppressed a hypertrophy of the kidney significantly. The activity of ALT was significantly lowered in the diabetic groups except Allium sativum group compared to STZ-control group. The Allium sativum and Allium tuberosum groups showed the hypoglycemic effects at 4 weeks. There were no significant differences between the control and all the other diabetic groups in the plasma levels of cholesterol, HDL-cholesterol, triglycerides and free fatty acids. Most of the Allium groups except Allium fistulosum were observed significantly lowered level of MDA in the lung compared to STZ-control group. The diabetic rats fed the Allium cepa and Allium sativum have shown significantly lowered hepatic Zn contents. The results suggested that the intake of the Allium vegetables may be effective in the antihyperglycemia by lowering blood glucose levels.

한국산 식용 및 약용식물의 항당뇨 효과 탐색 연구로 본 연구에서는 Allium속 식물 중 식품으로 다양하게 사용하고 있는 5가지 양파, 파, 마늘, 부추 및 산마늘을 냉동건조하고 분말화하여 첨가한 식이를 STZ로 유발시킨 당뇨 흰쥐에게 28일간 섭취시킨 후 혈장 포도당, 지질 함량 및 간장내 무기질 함량을 분석하여 다음과 같은 결과를 얻었다. 1) STZ에 의한 당뇨유발로 당뇨대조군의 체중은 감소하였으나 당뇨실험군의 체중은 증가하는 경향을 보였고 특히 마늘섭취군에서는 유의적인 체중 증가를 나타내었다. 식이이용효율에서도 당뇨대조군은 다식현상으로 식이섭취량은 체중증가량이 적어 음 (-)의 식이효율을 나타내었고 양파섭취군과 마늘섭취군 및 부추섭취군은 유의적으로 높은 식이효율을 보였다. 2) 장기의 무게는 당뇨대조군과 당뇨실험군에 비해 마늘섭취군의 신장 무게가 유의적으로 낮아 신장 비대를 엊제한 것으로 나타났으며 다른 장기에서는 유의적인 차이를 보이지 않았다. AST 활성도는 실험군간에 유의성이 없는 결과를 나타내었으나 ALT 활성도는 마늘섭취군에서 유의적으로 낮은 수준을 나타내었다. 3) 당뇨대조군은 고혈당이 지속된 반면 마늘섭취군의 혈당은 실험 1주째부터 유의적으로 낮은 수준을 보여 혈당 억제 효과를 나타내었으며 부추섭취군도 실험 4주째에는 유의적으로 낮은 수준의 혈당을 나타내었다. 간장 글리코겐 함량은 정상군에 비해 모든 당뇨유발군이 유의적으로 낮은 함량을 나타내었으나 당뇨대조군에 비해 Allium속 식물의 섭취는 모두 높은 수치를 보이었다. 4) 혈장 내 콜레스테롤, 중성지방, 유리지방산, HDL-콜레스테롤 함량은 각 실험군간의 유의차가 없었으며 폐의 MDA 함량은 당뇨대조군에 비해 양파섭취군, 마늘섭취군, 부추섭취군과 산마늘섭취군에서 유의적으로 낮았다. Allium속 식물 중 마늘과 부추는 고혈당의 수준을 저하시키거나 억제시켜 혈당을 개선할 수 있으며 부추와 산마늘섭취가 혈당저하에는 관련되지 않았으나 조직의 과산화지질 감소에는 작용함을 알 수 있었다. 당뇨병의 주요증세가 고혈당 그리고 다식임에도 불구하고 급격한 체중감소를 보인다는 점에서 본 실험결과는 Allium속 식물을 당뇨동물에게 급여함으로써 체중저하를 방지하고 당대사를 개선함으로써 당뇨병의 증세가 어느 정도 호전될 수 있음을 보여준다. Allium속 식물이라도 함유된 생리활성 성분에 따라 다른 생리적 기능을 나타낼 수 있으므로 그 생리활성성분을 고려한 적절한 섭취는 그 효능을 극대화할 수 있음을 추정할 수 있으며 각 성분에 대한 생리 활성에 대해서는 더 깊은 연구가 필요하다고 사료된다. 또한 그 자체로서 항산화 작용에 관여하거나 다양한 체내 산화스트레스에 대해 영향을 받는 Cr, Zn, Fe 및 Mn과 같은 미량 원소들의 체내 반응 기작에 관해서는 앞으로 좀더 연구해야 할 과제라고 사료된다.

Keywords

References

  1. Kwan TW, Kang SK. Development of food industry and our eating style. Korean Dietary Culture Association Autumn Symposium, 1993
  2. Lee BR, Cha JH, Park JY. Effects of dietary Mandarino LJ. Current hypothesis for biochemical basis of retinopathy. Diabetes Care 15: 1892-1901, 1992 https://doi.org/10.2337/diacare.15.12.1892
  3. Summary report of cause of death statistics in 2001, Korea national stastical office, Seoul, 2002
  4. Cambell PK, Steil CF. Diabetets clinical pharmacy and therapeutics. 4th ed. Williams & Wilks, 1988
  5. Abrams JJ. Ginberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in non-ketoic mellitus. Diabetes 31: 903-910, 1982 https://doi.org/10.2337/diabetes.31.10.903
  6. Behrens WA, Madeae R. Vitamin C and vitamin E status in the spontaneously diabetic BB rat before the onset of diabetes. Metabolism 40(1): 72-76, 1991 https://doi.org/10.1016/0026-0495(91)90195-3
  7. Kannel WB, Mcg LL. Diabetes and cardiovascular disease. JAMA 241(19): 2035-2038, 1979 https://doi.org/10.1001/jama.241.19.2035
  8. Kang Y, Ko IY. The cause of development and prospective treatment of type 1 diabetics. Saengwhahak Nyusu 15(6): 388- 396, 1995
  9. Goldberg RB. Lipid disorders in diabetes. Diabetes Care 4: 561- 572, 1981 https://doi.org/10.2337/diacare.4.5.561
  10. Reaven KM. Abnormal lipoprotein metabolism in non-insulin dependent diabetes mellitus. Am J Med 8: 31-40, 1987 https://doi.org/10.1016/0002-9343(50)90339-1
  11. West KM, Ahuja MM, Bennt PH. The role of circulating glucose and triglyceride concentrations and their interaction with other risk factors as determinations of arterial disease in nine diabetic population samples from the WHO multimation study. Diabetes Care 6: 361-369, 1983 https://doi.org/10.2337/diacare.6.4.361
  12. Park PS, Lee MY. Effects of an onion diet on carbon tetrachloride toxicity of rats. J Korean Soc Food Nutr 20: 121, 1991
  13. Moon GS, Ryu BM, Lee MJ. Components and antioxidative activities of buchu (Chinese chives) diet on antioxidative system of ICR mice. J Korean Soc Food Sci Nutr 31: 834-839, 2003
  14. Lim JS. Onion and health. Kukjemunwhachulpankongsa, 1993
  15. Kendler BS. Garlic (Allium sativum) and onion (Allium cepa): A review of their relationship to cardiovascular disease. Prev Med 16: 670-685, 1987 https://doi.org/10.1016/0091-7435(87)90050-8
  16. Rho SN, Han JH. Cyotoxicity of garlic and onion methanol extract on human lung cancer cell lines. J Korean Soc Food Soc Nutr 29: 870-874, 2000
  17. Kim SO, Lee MY. Effect of ethylacetate fraction of onion on lipid metabolism in high cholesterol fed rats. J Korean Soc Food Sci Nutr 30: 673-678, 2001
  18. Woo HS, Aan BJ, Bae JH, Kim S, Choi HJ, Han HS, Choi C. Effect of biologically active fractions from onion on physiological activity and lipid metabolism. J Korean Soc Food Sci Nutr 32 (1): 119-123, 2003 https://doi.org/10.3746/jkfn.2003.32.1.119
  19. Warshafsky S, Kamer RS, Sivak SL. Effect of garlic on total serum cholesterol. Ann Intern Med 119: 599-605, 1993 https://doi.org/10.7326/0003-4819-119-7_Part_1-199310010-00009
  20. Augusti KT. Hypocholesterolemic effect of garlic (Allium sativum Linn). Ind J Exp Biol 15: 489-490, 1997
  21. Jo HJ, Choi MJ. Effect of 1% garlic powder on serum and liver lipid and plasma amino acid concentration in rats fed cholesterol diet. J Korean Soc Food Sci Nutr 3(1): 98-103, 2002
  22. Lee SH, Woo SJ, Koo YJ, Shin HK. Effects of mugwort, onion and polygalate radix on the intestinal environment of rats. Korean J Food Sci Technol 27: 598-604, 1995
  23. Ahn DK. An colored illustrated guide to medicinal herbs. Gyohaksa, 1998
  24. Lee WC. An illustrated botany. Gyohaksa, 1996
  25. Reuter HD, Koch HP, Lawson DL. Therapeutic effects and applications of garlic and its preparations. In: garlic: the science and therapeutic applications of Allium sativum L. and related species, 2nd ed. pp 135-212, William & Wilkins, Baltimore, MD
  26. Srivastava KC, Bordia A, Verma SK. Garlic (Allium sativum) for disease prevention. South African J Sci 91: 68-77, 1995
  27. Jain RC, Vyas CR. Letter; hypoglycemia action of onion on rabbits. Br J Nutr 2(21): 730, 1974
  28. Jain RC, Vyas CR. Garlic in alloxan-induced diabetic rabbits. Am J Clin Nutr 28: 684-685, 1975 https://doi.org/10.1093/ajcn/28.7.684
  29. Reeves PG. Components of the AIN-93 diets as improvements in the AIN- 76A diet. J Nutr 127: 838S-841S, 1997
  30. Lee SS, Kim JW. Pharmacological studies on the water extract of fractions of Lycium chinese Mill. Duksung Bull Pharm Sci 2: 29-41, 1991
  31. Gold G, Manning M, Heldt A, Nowlain R, Pettit JG, Grodsky GM. Diabetes induced with multiple subdiabetogenic doses of streptozotocin. Diabetes 30: 634-638, 1981 https://doi.org/10.2337/diabetes.30.8.634
  32. Retiman S, Frankel S. A colorimetric method the determination of serum glutamic oxalacetic and glutamine pyruvic transaminases. Am J Clin Pathol 28: 58-63, 1957
  33. Rabbo E, Terkildsen TC. On the enzymatic determination of blood glucose. Scand J Lab Invest 12: 402-407, 1968 https://doi.org/10.3109/00365516009065404
  34. Hassid WZ, Abraham X. Chemical procedures for analysis of polysaccharides In: Methods in Enzymology 3. Academic press, pp.34-50, 1957
  35. Richimond W. Preparation and properties of a cholesterol oxidase from nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. J Clin Chem 19: 1350-1356, 1973
  36. Allian CC, Poon LS, Chan CSG, Richmond W, Paul C Fu. Enzymatic determination of total serum cholesterol. J Clin Chem 20: 470-475, 1974
  37. Finely PR, Schifman RB, Williams RJ, Luchti DA. Cholesterol in high- density lipoprotein: Use of $Mg^{2+}$dextran sulfate in its measurement. Clin Chem 24: 931-933, 1978
  38. Giegel JL, Ham SB, Clema W. Serum triglyceride determined colorimetry with an enzyme that produces hydrogen peroxide. J Clin Chem 21: 1575-1581, 1975
  39. Kim J. Compendium of the clinical inspection. 29th ed ,1983
  40. Uchiyama M, Mihara M. Determination of malondialdehyde precursor in tissue by thiobarbituric acid test. Anal Biochem 86: 271-278, 1978 https://doi.org/10.1016/0003-2697(78)90342-1
  41. Lowry OH, Rosebrough NJ, Farr AJ, Randall RR. Protein measurement with the foline phenol reagent. J Biol Chem 193: 265- 273, 1951
  42. Rao M, Blane K, Zonnenberg M. PC-STAT. Dept. Food Sci Univ Georgia, 1985
  43. Preston AM, Tome J, Morales JJ, Milan L, Cuevas AA, Medina J, Santiago JA. Diabetic parameters 58 weeks after injection with streptozotocin in rats fed basal diet supplemented with fiber, mineral and vitamins. Nutr Res 11: 895-906, 1991 https://doi.org/10.1016/S0271-5317(05)80617-7
  44. Pain VM, Garlick P. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem 249: 4510-4514, 1974
  45. Lee JS, Son HS, Maeng YS, Chang YK, Ju JS. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Nutrition 27: 819- 827, 1994
  46. Jung HS, Noh KH, Cho HY, Park JY, Choi CY, Kwon TW, Song YS. Effect of buchu (Allium tuberosum) on lipid peroxidation and antioxidative defense system in streptozotocin-induced diabetic rats. Korean J Life Sci 13: 333-342, 2003 https://doi.org/10.5352/JLS.2003.13.3.333
  47. Tourandokht B, Mehrdad R. Beneficial effect of the vascular reactivity of streptozotocin-diabetic rats. J Ethnopharmacol 85: 139-144, 2003 https://doi.org/10.1016/S0378-8741(02)00372-0
  48. Kwag OG, Yang JA, Rhee SJ. Effects of vitamin E on the antioxidative system of kidney in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 28(3): 654-662, 1999
  49. Gallaher DD, Casallany AS, Shoeman DW, Olsen JM. Diabetes increases excretion of urinary malonaldehyde conjugates in rats. Lipids 28: 663-666, 1993 https://doi.org/10.1007/BF02536063
  50. Steer HA, Sochr M, McLean P. Renal hypertrophy in experimental diabetes changes in pentose phosphate pathway activity. Diabetes 34: 485-490, 1985 https://doi.org/10.2337/diabetes.34.5.485
  51. Goldberg RB. Lipid disorders in diabetes. Diabetes Care 4: 561- 572, 1981 https://doi.org/10.2337/diacare.4.5.561
  52. Kahn, CR. The molecular mechanism of insulin action. Ann Rev Med 36: 429, 1985 https://doi.org/10.1146/annurev.me.36.020185.002241
  53. Like AA, Appe MC, Rossin AA. Autoantibodies in the BB/W rat. Diabetes 31: 816-820, 1982 https://doi.org/10.2337/diabetes.31.9.816
  54. Lee KH, Chung SH. Antidiabestic effect and mechanism of Mori folium on streptozotocin induced diabetic mouse. Bull KH Pharma Sci 8: 87-99, 2000
  55. Gowsala P. Stivam. Protection against Helicobacter pylori and other bacterial infections by garlic. J Nutr 131: 1106S-1108S, 2001
  56. Seyer-hansen K. Renal hypertrophy in streptozotocin diabetic rats. Clin Sci Mol Med 51: 551-555, 1976
  57. Sheela CG, Augusti KT. Antidiabetic effects of S-allylcysteine sulphoxide isolated from garlic Allium sativum Linn. Indian J Exp Biol 30: 523-526, 1992
  58. Chai TM, Park MR, Rhee SJ. Effects of green tea catechin on the antioxidative defense system and lipofuscin levels of heart in streptozotocin-induced diabetic rats. Korean J Gerontol 8: 96- 103, 1998
  59. Meglasson MD, Burch PT, Berner DK, Najafi H, Matschinsky FM. Identification of glucokinase as an alloxan-sensitive glucose sensor of the pancreatic-cells. Diabetes 35: 1163-1173, 1986 https://doi.org/10.2337/diabetes.35.10.1163
  60. Wolf HPO, Engel DW. Decrease of fatty acid oxidation, ketogenesis and gluconeogenesis in isolated perfused rat liver phenylalkyl oxirane carbohydrate (B 807-27) due to inhibition of CPTI (EC2.3.1.21). Eur J Biochem 146: 359-363, 1985 https://doi.org/10.1111/j.1432-1033.1985.tb08661.x
  61. Hribal ML, Oriente F, Accili D. Mouse models of insulin resistance. Am J Physiol Endocrinolmetab 282: E977-E981, 2002
  62. Agius L, Peak M, Alberti KG. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J 268(3): 807, 1990
  63. Park SH, Lee YK, Lee HS. The effects of dietary fiber feeding on gastrointestinal functional and lipid glucose metabolism in streptozotocin induced diabetic rats. Korean J Nutrition 27: 311- 322, 1994
  64. Kim HK, Cho DW, Hahm YT. The effects of Coix bran on lipid metabolism and glucose challenge in hyperlipidemic and diabetic rats. J Korean Soc Food Sci Nutr 29: 140-146, 2000
  65. Choi JW, Son KH, Kim SH. The effect of nicotinamide on plasma lipid compositions in streptozotocin induced diabetic rats. Korean J Nutrition 20: 306-311, 1991
  66. Castelli WP, Wilson PF, Lery D, Anderson K. Serum lipids and risk of coronary artery disease. Atherosclerosis Rev 21: 7-19, 1990
  67. De leo. Iron modulation of LPS-induced manganese superoxide dismutase gene expression in rat tissues. FEBS Lett 403: 131- 135, 1997 https://doi.org/10.1016/S0014-5793(97)00034-3
  68. Chang KJ The effects of taurine and ${\beta}$-alanine on blood glucose and blood lipid concentrations in insulin-treated diabetic rats. Korean J Comm Nutr 4(1): 103-110, 1999
  69. Yu-yan Y, Shaw-Mei Y. Garlic reduces plasma lipids by inhibiting hepatic cholesterol and triglycerol synthesis. Lipids 29: 189, 1994 https://doi.org/10.1007/BF02536728
  70. Lee JS, Son HS, Maeng YS, Chang YK, Ju JS. Effects of buckwheat on organ weight, glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Nutrition 27: 819- 827, 1994
  71. Tol AV. Hypertriglyceride in the diabetic rats effective removal of serum very low density lipoprotein. Atherosclerosis 26: 117- 128, 1977 https://doi.org/10.1016/0021-9150(77)90146-0
  72. Baron H, Levy E. Oschry Y, Ziv E, Scafrir E. Removal effect of very low density lipoproteins from diabetic rats. Biochem Biophysic Acta 793: 115-118, 1984 https://doi.org/10.1016/0005-2760(84)90059-6
  73. Lee SZ, Lee HS. Changes in plasma lipid pattern in streptozotocin-induced diabetic rats: A time course study. Korean J Nutrition 32(7): 767-774, 1999
  74. Prichard KA, Patel ST, Karper CW, Newman HAI, Panganamala RV. Triglyceride-lowering effects of dietary vitamin E in streptozotocin induced diabetic rats fed high vitamin E. Diabetes 35: 278, 1986 https://doi.org/10.2337/diabetes.35.3.278
  75. Karpen CW, Cataland S, O'Doriso TM, Panganmala RV. Production of 12-hydroxyeicosetraenoic acid vitamin E status in platelets from type 1 human diabetic subjects. Diabetes 34: 526, 1985 https://doi.org/10.2337/diabetes.34.6.526
  76. Paccio G, Baccari GC, Frascatore S, Sellitti S, Pisanti FA. The vitamin-E derivative U-83836-E in the low-dose streptozotocintreated mouse: effects on diabetes development. Diabetes Res Clin Pract 30: 163-171, 1995 https://doi.org/10.1016/0168-8227(95)01186-2
  77. Hung JV, Smith CCT, Wolff SP, Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420-1424, 1990 https://doi.org/10.2337/diabetes.39.11.1420
  78. Wolff SP, Dean RT. Glucose autoxidation and protein modification; the potential role 'antioxidative glycosylation' in diabetes mellitus. Biochem J 245: 243-250, 1987 https://doi.org/10.1042/bj2450243
  79. Takasu N, Komiya I, Asasa T, Nagasawa Y, Yamada T. Streptozotocin and alloxan induced $H_{2}O_{2}$ generation and DNA fragmentation in pancreatic islets. Diabetes 40: 1141-1145, 1991 https://doi.org/10.2337/diabetes.40.9.1141
  80. Failla ML, Kiser RA. Altered tissue content and cytosol distribution of trace minerals in experimental diabetes. J Nutr 111: 1900, 1981
  81. Failla ML, Kiser RA. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am J Physiol 244: E115, 1983
  82. Thomas JP, Bachowski GJ, Girotti AW. Inhibition of cell membrane lipid peroxidation by cadmium and zinc-metallothiones. Biophysica Acta 884: 448, 1986