DOI QR코드

DOI QR Code

Effects of Changes of Climate, Groundwater Withdrawal, and Landuse on Total Flow During Dry Period

기후, 지하수 취수 및 토지이용 변화의 건기 총유출량에 대한 영향

  • Lee, Kil-Seong (Dept. of Civil, Urban & Geosystem Engrg., Seoul National Univ.) ;
  • Chung, Eun-Sung (Dept. of Civil, Urban & Geosystem Engrg., Seoul National Univ.) ;
  • Shin, Mun-Ju (Dept. of Water Resources, Dong-bu Corporation)
  • 이길성 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 정은성 (서울대학교 공과대학 지구환경시스템공학부) ;
  • 신문주 ((주)동부엔지니어링 수자원부)
  • Published : 2006.11.30

Abstract

In this study, the effects of variability in climate, groundwater withdrawal, and landuse on dry-weather streamflows were investigated by input sensitivity analysis using SWAT (Soil and Water Assessment Tool). Since only dry-period precipitation and daily average solar radiation among climate variables have high correlation coefficients to total flow (TF), sensitivity analyses of those were conducted. Furthermore, an equation was derived from simulation results for 30 years by multiple regression analysis. It may be used to estimate effects of various climatic variations (precipitation during the dry period, precipitation during the previous wet period, solar radiation, and maximum temperature). If daily average maximum temperatures increase, TFs during the dry period will decrease. Sensitivities of groundwater withdrawal and landuse were also conducted. Similarly, groundwater withdrawals strongly affect streamflow during the dry period. However, landuse changes (increasing urbanization) within the forested watershed do not appear to significantly affect TF during the dry period. Finally, a combined equation was derived that describes the relationship between the total runoff during the dry period and the climate, groundwater withdrawal and urban area proportion. The proposed equation will be useful to predict the water availability during the dry period in the future since it is dependent upon changes of temperature, precipitation, solar radiation, urban area ratio, and groundwater withdrawal.

본 연구는 SWAT모형을 이용하여 기상, 지하수 취수량, 토지이용 변화에 대한 건기 총유출량의 민감도를 제시하였으며 더 나아가 건기의 총 유출량을 추정하기 위해 건기 총강우량, 전 우기 총강우량, 평균 일 최대온도, 일평균 태양복사량과 같은 기상 변수들과 지하수 취수량 및 도시면적 비율을 이용하여 회귀식을 도출하였다. 도출된 식을 이용하여 기후변화에 대한 건기 총유출량 변화를 살펴보기 위하여 온도와 강우량의 변화에 대한 건기 총유출량의 변화율을 제시하였는데 기후변화로 인해 온도가 상승할 경우 건기의 총 유출량은 감소하는 것으로 나타났다. 지하수 취수량은 총 유출량과 관계가 높은데 반해 토지이용 변화는 산간유역인 대상유역의 경우 크게 영향을 미치지 않음을 알 수 있었다. 본 연구에서 제안된 식은 기저유출에 영향을 크게 미치는 강우와 기온 및 태양복사량을 포함하는 기상상태, 지하수 취수량, 도시면적 비율을 변수로 갖는 식이므로 기후변화를 비롯한 유역의 다양한 수문학적 변화에 대해 대상유역의 미래 건기의 수자원 확보량을 예측하는데 유용하게 사용될 수 있다.

Keywords

References

  1. 강문성, 박승우 (2003). '비점오염모델을 이용한 오염 총량모의시스템의 개발 및 적용.' 한국수자원학회 논문집, 한국수자원학회, 제36권, 제1호, pp. 117-128
  2. 김철겸, 김남원 (2004). '산림식생에 따른 유역 물수 지 영향 평가.' 한국수자원학회논문집, 한국수자 원학회, 제37권, 제9호, pp. 737-744
  3. 심명필 (2003). 지속가능한하천수개발. 인하대학교, 과학기술부
  4. 이길성, 정은성, 김영오 (2006). '도시 유역 관리를 위한 통합적인 접근방법.' 한국수자원학회논문집, 한국수자원학회, 제39권, 제3호, pp. 151-167 https://doi.org/10.3741/JKWRA.2006.39.2.161
  5. 이길성, 진락선, 이상호, 이정민 (2005). 'PCSWMM을 이용한 건천화 방지를 위한 유지용수의 공급 (2)모형의 적용.' 대한토목학회논문집, 대한토목학회, 제25권, 제6B호, pp. 431-436
  6. 이승종, 김영오, 이상호, 이길성 (2005). 'WEP 모형을 이용한 도림천 유역 물순환 모의' 한국수자원학회논문집, 한국수자원학회, 제38권, 제6호, pp. 449-460 https://doi.org/10.3741/JKWRA.2005.38.6.449
  7. 조효섭, 정관수, 김재한 (2003). 'GIUH적용을 위한 DEM 격자크기 및 Threshold Area의 민감도 분석.' 한국수자원학회논문집, 한국수자원학회, 제36 권, 제5호, pp. 799-810
  8. 한국수자원공사 (2000). 지하수조사연보. 건설교통부
  9. 한국수자원공사 (2004). 지하수조사연보. 건설교통부
  10. Ahlfeld, D.P. (2004). 'Nonlinear response of streamflow to groundwater withdrawal for a hydrologic streamflow model.' Advances in Water Resources, Vol. 27, pp. 349-360 https://doi.org/10.1016/j.advwatres.2004.02.006
  11. Albek, M., Ogutveren, U.B., and Albek, E. (2004). 'Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF.' Journal of Hydrology, Vol. 285, pp. 260-271 https://doi.org/10.1016/j.jhydrol.2003.09.002
  12. Arnell, N.W. (1992). 'Factors controlling the effects of climate change on river flow regimes in a humid temperate environment.' Journal of Hydrology, Vol. 132, pp. 321-342 https://doi.org/10.1016/0022-1694(92)90184-W
  13. Arnold, J.G., and Fohrer, N. (2005). 'SWAT 2000: current capabilities and research opportunities in applied watershed modeling.' Hydrological Processes, Vol. 19, No. 3, pp. 563-572 https://doi.org/10.1002/hyp.5611
  14. Arnold, J.G., Srinivasan, R., Muttiah, R.S., Allen, P.M, and Walker, C. (1999). 'Continental scale simulation of the hydrologic balance.' Journal of American Water Resources Association, Vol. 35, No. 5, pp. 1037-1052 https://doi.org/10.1111/j.1752-1688.1999.tb04192.x
  15. Arnold, J.G., Neitsch, S.L., Kiniry, J.R., Williams, J.R., and King, K.W. (2002). Soil and Water Assessment Tool: Theoretical Documentation Ver. 2000. Texas Water Resources Institute, College Station, Texas, TWRI Report TR-191
  16. Barlow, P.M, Ahlfeld, D.P., and Dickerman, D.C. (2003). 'Conjunctive-management models for sustained yield of stream-aquifer systems.' Journal of Water Resources Planning and Management, Vol. 129, No.1, pp. 35-48 https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(35)
  17. Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jobes, T.H., and Donigian, A.S. (2001). Hydrological Simulation Program-FORTRAN User's Manual for Version 12. AQUA TERRA Consultants, Mountain View, California
  18. Brown, R.G. (1988). 'Effect of precipitation and land use on storm runoff.' Water Resources Bulletin, Vol. 24, pp. 421-425 https://doi.org/10.1111/j.1752-1688.1988.tb03001.x
  19. Brun, S.E., and Band, L.E., (2000). 'Simulating runoff behavior in an urbanizing watershed.' Computers, Environment and Urban Systems, Vol. 24, pp. 5-22 https://doi.org/10.1016/S0198-9715(99)00040-X
  20. Burn, D.H (1994). 'Hydrologic effects of climate change in west-central Canada.' Journal of Hydrology, Vol. 160, pp. 53-70 https://doi.org/10.1016/0022-1694(94)90033-7
  21. Chiew, F.H.S., Whetton, P.H., McMahon, T.A., and Pittock, A.B. (1995). 'Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments.' Journal of Hydrology, Vol. 167, pp. 121-147 https://doi.org/10.1016/0022-1694(94)02649-V
  22. Chuanji, C.X., Zhongming, H, and Zhonggui, W. (2004). 'Simulation methods of spring discharge variations in Karst area.' Proceedings of the 2nd Asia Pacific Association cf Hydrology and Water Resources Conference. Singapore, Singapore, Vol. II, pp. 68-75
  23. Chung, E.S., Lee, K.S., and Park, S.B. (2005). 'Runoff characteristics due to the changes of landuse in the Hakuicheon watershed.' 12th World Water Congress, New Delhi, India, CD
  24. Daniel, C., and Wood, F.S. (1980). Fitting Equations to Data. 2nd Ed., Willey, New York, NY
  25. Duell, L.F.W. (1994). 'The sensitivity of northern Sierra Nevada streamflow to climate change.' Water Resources Bulletin, Vol. 30, pp. 841-859 https://doi.org/10.1111/j.1752-1688.1994.tb03333.x
  26. Edwards, C., and Miller, M. (2001). PLOAD Version 3.0 User's Manual. USEPA
  27. IPCC (1992). Climate change 1992 The Supplementary Report to the IPCC Scientific Assessment (edited by Houghten, J.T., Callander, B.A., and Varney, S.K.). Cambridge University Press, Cambridge, UK
  28. James, W., Huber, W., Dickinson, R, Pitt, R., Roesner, L., and Aldrich, J. (2003). User's Guide to PCSWMM. USEPA
  29. Kang, S., Park, J.I., Singh, V. (1998). 'Effect of urbanization on runoff characteristics of On-Cheon Stream watershed in Pusan, Korea.' Hydrological Processes, Vol. 25, pp. 351-363
  30. Kim, C., Kim H., Jang, C., and Kim, N. (2003). 'Runoff estimation from two mid-size watersheds using SWAT model.' Water Engineering Research, Vol. 4, No.4, pp. 193-202
  31. Lal, M., Cubasch, U.. and Santer, B.D. (1992). 'Potential changes ill monsoon climate associated with global warning as inferred from coupled ocean-atmosphere general circulation model.' CAS/JSC Working Group Report No. 17, WMO/TD 467, World Meteorological Organization, Geneva
  32. Lettenmaier, D.P., and Gan (1990). 'Hydrologic sensitivities of the Sacramento-San Joaquin river basin, California, to global warming.' Water Resources Research, Vol. 26, No. 1, pp. 69-86 https://doi.org/10.1029/WR026i001p00069
  33. Male, J.W., and Mueller, F.A. (1992). 'Model for prescribing groundwater use permits.' Journal of Water Resources Planning and Management, Vol. 118, No. 5, pp. 543-561 https://doi.org/10.1061/(ASCE)0733-9496(1992)118:5(543)
  34. Mallows, C.L. (1973). 'Some comments on Cp' Technometrics, Vol. 28, pp. 313-319 https://doi.org/10.2307/1268980
  35. McCabe, G.J. Jr, and Ayers, M. (1989). 'Hydrologic effect of climate change in the Delaware river basin, Colorado.' Journal of Hydrology, Vol. 157, pp. 157-176
  36. McCuen, R.H. (2003). Modeling Hydrologic Change: Statistical. Methods. Lewis Publisher
  37. Nash, J.E., and Sutcliffe, J.V, (1970). 'River flow forecasting through conceptual models: Part 1 -A discussion of principles.' Journal of Hydrology, Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  38. Nash, L.L., and Gleick, P.H. (1991). 'Sensitivity of streamflow in the Colorado basin to climatic changes.' Journal of Hydrology, Vol. 125, pp. 221-241 https://doi.org/10.1016/0022-1694(91)90030-L
  39. Reichard, E.G. (1995). 'Groundwater-surface water management with stochastic surface water supplies: A simulation optimization approach.' Water Resources Research, Vol. 31, No. 11, pp. 2845-2865 https://doi.org/10.1029/95WR02328
  40. Santhi, C., Arnold, J.G., Williams, J.R., Srinivasan, R., and Hauck, L.M. (2001). 'Validation of the SWAT model on a large river basin with point and non point sources.' Journal cf American Water Resources Association, Vol 37, No.5, pp. 1169-1188 https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  41. Schade, T.G., and Shuster, W.D. (2005). 'Paired watershed study of landuse and climate change impact on small streams.' Environmental Water Resources Institute 2005, ASCE, Anchorage, Alaska
  42. Singh, P., and Bengtsson, L. (2004). 'Hydrological sensitivity of a large Himalayan basin to climate change.' Hydrological Processes, Vol 18, pp. 2363-2385 https://doi.org/10.1002/hyp.1468
  43. Singh, P., and Kumar, N. (1997). 'Impact of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river.' Journal of Hydrology, Vol. 193, pp. 316-350 https://doi.org/10.1016/S0022-1694(96)03142-3
  44. Tripathi, M.P., Raghuwanshi, N.S., and Rao, G.P. (2005). 'Effect of watershed subdivision on simulation of water balance components.' Hydrological Processes, Vol 20, pp. 1137 -1156

Cited by

  1. Assessment of Streamflow Depletion Due to Groundwater Pumping from a Well vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1079
  2. Combined Effects of Groundwater Abstraction and Irrigation Reservoir on Streamflow vol.46, pp.7, 2013, https://doi.org/10.3741/JKWRA.2013.46.7.719
  3. Determination of Instreamflow Requirement for Upstream Urban Watershed Using SWAT Model vol.39, pp.8, 2006, https://doi.org/10.3741/JKWRA.2006.39.8.703
  4. Quantification of seasonally variable water flux between aquifer and stream in the riparian zones with water curtain cultivation activities using numerical simulation vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.277
  5. Effects of Irrigation Reservoirs and Groundwater Withdrawals on Streamflow for the Anseongcheon Upper Watershed vol.35, pp.4, 2015, https://doi.org/10.12652/Ksce.2015.35.4.0835
  6. Analysis of Effects of Groundwater Abstraction on Streamflow for Sinduncheon Watershed vol.45, pp.12, 2012, https://doi.org/10.3741/JKWRA.2012.45.12.1259
  7. Spatial Assessment of Effects of Near-Stream Groundwater Pumping on Streamflow Depletion vol.48, pp.7, 2015, https://doi.org/10.3741/JKWRA.2015.48.7.545