DOI QR코드

DOI QR Code

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment

갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정

  • Kim, Jeong-Kon (Water Resources and Environment Research Center, Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Son, Kyong-Ho (Water Resources and Environment Research Center, Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Noh, Jun-Woo (Water Resources and Environment Research Center, Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Jang, Chang-Lae (Water Resources and Environment Research Center, Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Ko, Ick-Hwan (Water Resources and Environment Research Center, Institute of Water and Environment, Korea Water Resources Corporation)
  • 김정곤 (한국수자원공사 수자원연구원) ;
  • 손경호 (한국수자원공사 수자원연구원) ;
  • 노준우 (한국수자원공사 수자원연구원) ;
  • 장창래 (한국수자원공사 수자원연구원) ;
  • 고익환 (한국수자원공사 수자원연구원)
  • Published : 2006.10.01

Abstract

Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

많은 수의 매개변수와 복잡한 구조를 가진 수문모형의 적용 시 세밀하고 강력한 모델 검 보정이 요구된다. 본 연구에서 금강유역에 위치한 갑천 소유역에 준 분포형 모형인 SWAT모형을 이용하여 다 목적 지점 검 보정 방법을 제시하였다. 모형의 보정 전 민감도 분석을 통한 각 소유역별로 특성 분석이 이루어 졌고, 유출에 민감한 매개변수들을 추정하였다. 그리고 최소한의 보정을 통한 모형의 유효성을 높이기 위해, 관측된 데이터로부터 매개변수 값을 선보정하는 과정을 거쳤다. 그 결과 각 소유역 별로 다른 매개변수들의 민감도가 나타났다. 관측유량에 대한 보정 단계에서 $R_{eff}$는 0.41-0.84, $R^2$은 0.5-0.86 값으로 신뢰성 있는 결과를 얻었다. Recursive digital filter로 추정된 기저 유출량을 약 2% 범위에서 산정하였다. 관측 지하수 수위와의 비교에서도 전체적으로 관측된 지하수 수위의 시간적 변동추이와 변동 폭을 잘 나타내었으며, $R^2$는 0.69로 만족스러운 결과를 보였다. 결론적으로, 다 목적 지점 방법의 사용은 모형기 구조와 추정된 매개변수들에 높은 신뢰도를 제공하였다.

Keywords

References

  1. 김정곤, 손경호, 노준우, 장창래, 고익환 (2006). 'SWAT 모델을 이용한 갑천 유역에 대한 수문 특성 분석 및 도시화 영향 평가', 한국수자원학회 논문집, 제출 https://doi.org/10.3741/JKWRA.2006.39.10.881
  2. 김남원, 정일문, 원유승 (2005) '완전 연동형 SWAT-MODFLOW 결합모형(II) 모형의 평가', 한국 수자원학회 논문집, 제37권 제6호, pp. 509- 515
  3. 배덕효, 이병주, 정일원 (2003). '위성영상 피복 분류에 대한 CN값 산정(I): - CN값 산정- ', 한국 수자원 학회, 제 36권 제 6호, pp. 985-997
  4. 오경주, 전병호, 양경규, 안원식, 조병호 (2005) '도시 지역 CN 산정연구', 한국 수자원 학회, 제 38권 제 12호, pp. 1009-1020 https://doi.org/10.3741/JKWRA.2005.38.12.1009
  5. 유철상, 김경준, 김남원 (2005). 'SWAT 모형의 적용을 위한 적정 강우계밀도의 추정', 한국수자원학회 논문집', 제 38권, 제 5호, pp. 415-425 https://doi.org/10.3741/JKWRA.2005.38.5.415
  6. 한국지질 자원 연구원, 대전지역 지하수 기초 조사 보고서, 2004
  7. Arnold, J.G. and Allen, P.M. (1996). Estimating hydrologic budgets for three Illinois watersheds, Journal of Hydrology, Vol. 176, pp. 57-77 https://doi.org/10.1016/0022-1694(95)02782-3
  8. Arnold, J.G., Muttiah, R.S., Srinivasan,R., Allen, P.M. (2000). Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. Journal of Hydrology, Vol. 227, pp. 21-40 https://doi.org/10.1016/S0022-1694(99)00139-0
  9. Cao,W., Bowden,W.B., Davie,T. and Fenemor, A. (2005). Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability, Hydrological processes, Vol. 20, pp. 1057-1073 https://doi.org/10.1002/hyp.5933
  10. Franks,S.W., Gineste, P., Beven, K.J., Merot,P. (1997). On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process, Water Resources Research, Vol. 34, pp. 789-791
  11. Hatterrnann,F.F., Wattenbach, M., Krysanova, V. and Wechsung, F. (2005). Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment-validation and uncertainty analysis, Hydrological processes, Vol. 19, pp. 693-714 https://doi.org/10.1002/hyp.5625
  12. Holvoet, K., van Griensven, A., Seuntgjens, P. Vanrolleghem, P.A. (2005). Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT, Physics and Chemistry of the Earth, Vol. 30, pp. 515-526
  13. Hooper, R.P., Stone, A., Christophersen, N., de Grosbois, E., and Seip, H.M. (1988). Assessing the Birkenes model of stream acidification using a multi-signal calibration methodology, Water Resources Research, Vol. 24, pp. 1308-1316 https://doi.org/10.1029/WR024i008p01308
  14. Luzio, M. .D., Srinivasan, R., Arnold, J. G., and Neitsch. S. L. (2002). ArcView Interface for SWAT2000 Users Guide
  15. Seibert, J., and J. J. McDonnell, (2002). On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration, Water Resour. Res., 38(11), 1241, doi: 10.l029/2001WR000978 https://doi.org/10.1029/2001WR000978
  16. Nash, J. E. and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, Vol. 10, pp. 282 - 290 https://doi.org/10.1016/0022-1694(70)90255-6
  17. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. and Williams, J. R. (2002). Soil and Water Assessment Tool User's Manual Version 2000
  18. Rawls, W. J., Brakensiek, D. L., Saxton, K. E. (1982). Estimation of soil water properties, Transactions of the American Society cf Agriculture Engineers, Vol. 25, pp. 1316-1320 https://doi.org/10.13031/2013.33720
  19. Perkons, S and Sophocleous, M. (1999). Development of a comprehensive watershed model applied to study stream yield under drought conditions, Ground Water, Vol. 37, pp. 418-426 https://doi.org/10.1111/j.1745-6584.1999.tb01121.x
  20. Refsgaard J.C. (1997). Parameterization, calibration and validation of distributed hydrological model. Journal of Hydrology Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  21. Rutledge. A.J. and Daniel, C. C. (1994). Testing an automated method to estimate ground-water recharge from stream flow record, Ground Water, Vol. 32, pp. 180-189 https://doi.org/10.1111/j.1745-6584.1994.tb00632.x
  22. Sorooshian S, Gupta V. K. (1995). Model calibration. In Computer Models of Watershed Hydrology, Singh VP(ed.) Water Resources Publication: Highlands Ranch, CO: 23-68
  23. Uhlenbrook, S., Seibert, J., Leibundgut, and Ch., Rodhe, A (1999). Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure, Hydrol. Sci. J., Vol. 44, pp. 279-299 https://doi.org/10.1080/02626669909492222
  24. Van Griesven, A., Meixner, T. (2003). Sensitivity, optimization and uncertainty analysis for the model parameters of SWAT. In: SWAT 2003: 2nd International SWAT Conference, Bari, Italy, 1-4 July
  25. Williams, J.R. (1995). Chapter 25. The EPIC Model. p. 909-1000. In computer Models of Watershed Hydrology. Water Resources Publications. Highlands Ranch, CO

Cited by

  1. Numerical Estimations of Nakdong River Flows Through Linking of Watershed and River Flow Models vol.44, pp.7, 2011, https://doi.org/10.3741/JKWRA.2011.44.7.577
  2. Parameter Estimation of SWAT Model Using SWAT-CUP in Seom-river Experimental Watershed vol.33, pp.2, 2013, https://doi.org/10.12652/Ksce.2013.33.2.529