A Study on Examples Applicable to Numerical Land Cover Map Data for Atmospheric Environment Fields in the Metropolitan Area of Seoul - Real Time Calculation of Biogenic CO2 Flux and VOC Emission Due to a Geographical Distribution of Vegetable and Analysis on Sensitivity of Air Temperature and Wind Field within MM5 -

수도권지역에서 수치 토지피복지도 작성을 통한 대기환경부문 활용사례 연구 - MM5내 기온 및 바람장의 민감도 분석과 식생분포에 기인한 VOC 배출량 및 CO2 플럭스의 실시간 산정을 중심으로 -

  • Moon, Yun-Seob (Department of Environmental Education, Korea National University of Education) ;
  • Koo, Youn-Seo (Department of Environmental Engineering, Anyang University)
  • Published : 2006.10.31

Abstract

Products developed in this research is a software which can transfer the type of shape(.shp) into the type of ascii using the land cover data and the topography data in the metropolitan area of Seoul. In addition, it can calculate the $CO_2$ flux according to distribution of plants within the land cover data. The $CO_2$ flux is calculated by the experimental equation which is compose of the meteorological parameters such as the solar radiation and the air temperature. The net flux was shown in about $-19ton/km^2$ by removing $CO_2$ through the photosynthesis during daytime, and in 2 ton/km2 by producing it through the respiration during nighttime on 10 August 2004, the maximum day of air temperature during the period of 3yr(2001 to 2004), in the metropolitan area of Seoul. Spatial distribution of the air temperature and the wind field is simulated by substituting the middle classification of the land cover map data, upgraded by the Korean Ministry of Environment(KME), for the land-use data of the United States Geological Survey(USGS) within the Meteorological Mesoscale Model Version 5(MM5) on 10 August 2006 in the metropolitan area of Seoul. Difference of the air temperature between both data was shown in the maximum range of $-2^{\circ}C\;to\;2.9^{\circ}C$, and the air temperature due to the land use data of KME was higher than that of USGS in average $0.4^{\circ}C$. Also, those of wind vectors were meanly lower than that of USGS in daytime and nighttime. Furthermore, the hourly time series of Volatile Organic Components(VOCs) is calculated by using the Biosphere Emission and Interaction System Version 2(BEIS2) including the new land cover data and the meteorological parameters such as the air temperature and so]ar insolation. It is possible to calculate the concentration of ozone due to the biogenic emission of VOCs.

Keywords

References

  1. 국립환경연구원 (2003) 대기보전정책지원시스템, 삼성SDS, 437pp
  2. 김유근, 이화운, 홍정혜, 손은하 (2000) 인공열과 land-use가 부산시의 열적 환경에 미치는 영향에 관한 연구, 한국대기환경학회지, 16(4), 363-372
  3. 김유근, 문윤섭, 오인보, 임윤규 (2002) 부산지역 토지이용 (land-use) 변화에 의한 열환경 수치모의, 한국대기환경학회지, 18(6), 453-463
  4. 김현구, 최재우, 손정봉, 정우식, 이화운(2003) 풍력발전 단지 조성을 위한 바람환경 분석, 한국대기환경학회지, 19(6), 745-756
  5. 이순환, 서광수, 김동희, 황수진(2004) 미기상규모 영역의 온실기체 승온효과에 관한 수치연구, 한국대기환경학회지, 20(3), 303-315
  6. 이순환, 김현숙, 이화운 (2004) 복잡 지형의 대기질 예측을 위한 지상자료동화의 효용성에 관한 수치연구, 한국대기환경학회지, 20(4), 523-537
  7. 이현영(1995) 토지이용 변화가 국지기상에 미치는 영향, 대한원격탐사학회지, 11(3), 83-100
  8. 이화운, 노순아, 문난경(2003) 지표면의 종류에 따른 오존의 건성침적속도에 관한 수치모의, 한국대기환경학회지, 19(5), 583-594
  9. 이화운, 정우식, 김현구, 이순환(2004) 대기오염 확산 해석을 위한 포항지역 기상장 연구 - 바람장 수치모의-, 한국대기환경학회지, 20(1), 1-15
  10. 한국환경정책평가연구원 (2002) 인공위성 영상자료를 이용한 토지피복지도구축, 126-137
  11. 홍정혜, 김유근(2000) 지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션, 한국대기환경학회지, 16(5), 511-520
  12. Bruse, M. and H. Fleer (1998) Simulating surface- plant- air interactions inside urban environments with a three-dimensional numerical model, Environmental Software and Modelling, 13, 373-384 https://doi.org/10.1016/S1364-8152(98)00042-5
  13. Chen, S.H. and J. Dudhia (2000) Annual report: WRF physics, Air Force Weather Agency, 38pp
  14. Clapp, R.B. and G.M. Hornberger (1978) Empirical equations for some soil hydraulic properties, Water Resource Res., 14, 601-604 https://doi.org/10.1029/WR014i004p00601
  15. Denning, A.S., M. Nicholls, L. Prihodko, I. Baker, P.-L. Vidale, K. Davis, and P. Bakwin (2003) Simulated and observed variations in atmospheric $CO_2$ over a Wisconsin forest, Global Change Biology, 9, 1241-1250 https://doi.org/10.1046/j.1365-2486.2003.00613.x
  16. Dudia, J. (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107 https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  17. Elisson, I. (2000) The use of climate knowledge in urban planning, Landscape and Urban Planning, 48, 31-44 https://doi.org/10.1016/S0169-2046(00)00034-7
  18. Guenther, A., P. Zimmerman, P. Harley, R. Monson, and R. Fall (1993) Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analysis, J. Geophys. Res., 98, 12609-12617 https://doi.org/10.1029/93JD00527
  19. Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. Mckey, T. Pierce, R. Scholes, R. Stainbrecher, R. Tallamraju, J. Tayler, and P. Zimmerman (1995) A globla model of natural volatile organic compound emissions, J. Geophys. Res., 100 (D5), 8873-8891 https://doi.org/10.1029/94JD02950
  20. Guenther, A. (1996) Isoprene fluxes measureed by enclosure, relaxed eddy accumulation, surface-layer gradient, mixed-layer gradient, and mixed-layer massbalance techniques, J. Geophys. Res., 101(D13), 18555-18567 https://doi.org/10.1029/96JD00697
  21. Guenther, A. (1997) Seasonal and spatial variations in natural volatile organic compound emission, Appl, 7(1), 34-45
  22. Guenther, A., B. Baugh, G. Bresseur, J. Geenberg, P. Harley, L. Klinger, D. Serca, and L. Vierling (1999) Isoprene emission estimates and uncertainties for the Central African EXPRESSO study domain, J. Geophys. Res., 104(D23), 8873-8891
  23. Hong, S.Y. and H.L. Pan (1996) Comparison of NCEPNCAR Reanalysis with 1987 FIFE Data, Mon. Wea. Rea., 124, 1480-1498 https://doi.org/10.1175/1520-0493(1996)124<1480:CONNRW>2.0.CO;2
  24. Iqbal, M. (1983) An introduction to solar radiation, Academic Press, New York, 205pp
  25. Kain, H.S. and J.M. Fritsch (1993) Convective parameterization for mesoscale models; The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, K.A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246pp
  26. Kimura, F. and S. Takahashi (1991) The effect of land-use and anthropogenic heating on the surface temperature in the Tokyo metropolitan area: A numerical experiment, Atmos. Environ., 25B, 155-164
  27. Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S. A. Clough (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave, J. Geophys, Res., 102(D14), 16663-16682 https://doi.org/10.1029/97JD00237
  28. Owen, S.M. and C.N. Hewitt (2000) Extrapolating branch enclosure measurements to estimates of regional scale biogenic VOC fluex in the northwestern Mediterranean basin, J. Geophys. Res., 105(D9), 11573-11583 https://doi.org/10.1029/1999JD901154
  29. Reisner, J., R.J. Rasmussen, and R.T. Bruintjes (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Quart. J. Roy. Meteor. Soc., 124B, 1071-1107
  30. Shashua-Bar, L. and M.E. Hoffman (2000) Vegetation as a climatic component in the esign of an urban street an empirical model for predicting the cooling effect of urban green areas with trees, Ener. Build., 31, 221-235 https://doi.org/10.1016/S0378-7788(99)00018-3
  31. Vukovich, F.M. and W.J. King (1980) A theoretical study of the St. Louis heat island: the wind and temperature distribution, J. Appl. Meteor., 15, 417-440 https://doi.org/10.1175/1520-0450(1976)015<0417:ATSOTS>2.0.CO;2
  32. Yareood, G., G. Wilson, S. Shepard, and Guenther (2003) User's guide to the global biosphere emissions and interactions system (GLOBEIS3) version 3.1, Environ International Corporation, Novato, CA, 33pp