DOI QR코드

DOI QR Code

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop (Department of Applied Chemistry, Hanyang University) ;
  • Chen, Ling-Xin (Department of Applied Chemistry, Hanyang University) ;
  • Choo, Jae-Bum (Department of Applied Chemistry, Hanyang University) ;
  • Lee, Eun-Kyu (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Sang-Hoon (Department of Biomedical Engineering, Korea University)
  • Received : 2006.09.11
  • Published : 2006.09.25

Abstract

Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

Keywords

References

  1. D. R. Ryes, D. Iossifidis, P. -A. Auroux, and A. Manz, 'Micro Total Analysis Systems 1. Introduction, Theory, and Technology,' Anal. Chem., vol. 74, pp. 2623-2636, 2002 https://doi.org/10.1021/ac0202435
  2. P. -A. Auroux, D. Iossifidis, D. R. Ryes, and A. Manz, 'Micro Total Analysis Systems 2. Analytical Standard Operations and Applications,' Anal. Chem., vol. 74, pp. 2637-2652, 2002 https://doi.org/10.1021/ac020239t
  3. P. D. I. Fletcher, S. J. Haswell, and V. N. Paunov, 'Theoretical considerations of chemical reactions in micro-reactors operating under electroosmotic and electrophoretic control,' Analyst, vol. 124, pp. 1273-1282, 1999 https://doi.org/10.1039/a903624e
  4. S. K. Sia and G. M. Whitesides, 'Microfluidic devices fabricated in PDMS for biological studies,' Electrophoresis, vol. 24, pp. 3563-3576, 2003 https://doi.org/10.1002/elps.200305584
  5. J. Monahan, A. A. Geweirth, and R. G. Nuzzo, 'Indirect fluorescence detection of simple sugars via high-pH electrophoresis in PDMS microfluidic chips,' Electrophoresis, vol. 23, pp. 2347-2354, 2002 https://doi.org/10.1002/1522-2683(200207)23:14<2347::AID-ELPS2347>3.0.CO;2-G
  6. J. C. Roulet, R. Voelkel, P. Hans, E. Verpoorte, N. F. de Rooij, and R. Daendliker, 'Performance of an integrated microoptical system for fluorescence detection in microfluidic systems,' Anal. Chem., vol. 74, pp. 3400-3407, 2002 https://doi.org/10.1021/ac0112465
  7. M. G. Roper, J. G. Shackman, G. M. Dahlgren, and R. T. Kennedy, 'Microfluidic chip for continuous monitoring of hormone secretion from live cells using an electrophoresis-based immunoassay,' Anal. Chem., vol. 75, pp. 4711-4717, 2003 https://doi.org/10.1021/ac0346813
  8. H. Kawazumi, A. Tashiro, K. Ogino, and H. Maeda, 'Observation of fluidic behavior in a PDMS micro-fluidic channel by a simple spectroscopic analysis,' Lab. Chip, vol. 2, pp. 8-10, 2002 https://doi.org/10.1039/b109058e
  9. M. A. Schwarz and P. C. Hauser, 'Recent developments in detection methods for microfabricated analytical devices,' Lab. Chip, vol. 1, pp. 1-6, 2001 https://doi.org/10.1039/b103795c
  10. E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, and T. Kitamori, 'Single-Cell Analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process,' Anal. Chem., vol. 74, pp. 1560-1564, 2002 https://doi.org/10.1021/ac011092t
  11. T. Minagawa, M. Tokeshi, and T. Kitamori, 'Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy,' Lab. Chip, vol. 1, pp. 72-75, 2001 https://doi.org/10.1039/b102790p
  12. S. Nie and S. Emory, 'Probing Single Molecules and Single Nanoparticles by Surface Enhance Raman Scattering,' Science, vol. 275, pp. 1102-1106, 1997 https://doi.org/10.1126/science.275.5303.1102
  13. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, 'Ultrasensitive Chemical Analysis by Raman Spectroscopy,' Chem. Rev., vol. 99, pp. 2957-2975, 1999 https://doi.org/10.1021/cr980133r
  14. K. Yea, S. Lee, J. B. Kyong, J. Choo, E. K. Lee, S. W. Joo, and S. Lee, 'Ultra-Sensitive Trace Analysis of Cyanide Ion Water Pollutant in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy,' Analyst, vol. 130, pp. 1009-1011, 2005 https://doi.org/10.1039/b501980j
  15. D. Lee, S. Lee, G. H. Seong, J. Choo, E. K. Lee, D. G. Gweon, and J. Choo, 'Quantitative Analysis of Methyl Parathion Pesticides in a PDMS Microfluidic Channel Using Confocal Surface Enhanced Raman Spectroscopy,' Appl. Spectrosc., vol. 60, pp. 373-377, 2006 https://doi.org/10.1366/000370206776593762
  16. T. Park, S. Lee, G. Seong, J. Choo, E. K. Lee, Y. S. Kim, W. H. Ji, S. Y. Hwang, D. G. Gweon, and S. Lee, 'Highly Sensitive Signal Detection of Duplex Dyelabelled DNA Oligonucleotides in a PDMS Microfluidic Chip: Confocal Surface-Enhanced Raman Spectroscopic Study,' Lab. Chip, vol. 5, pp. 437-422, 2005 https://doi.org/10.1039/b414457k
  17. W. Jeong, J. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong, and S. Lee, 'Continuous Fabrication of Biocatalyst Immobilized Microparticles Using Photopolymerization and Immiscible Liquids in Microfluidic Systems,' Langmuir, vol. 21, pp. 3738-3741, 2005 https://doi.org/10.1021/la050105l
  18. D. J. Kim, H. J. Oh, S. H. Lee, T. H. Park, and J. Choo, 'Easily Integrative and Efficient Micromixer and Its Application to the Detection of Glucose-Catalyst Reactions,' Analyst, vol. 130, pp. 293-298, 2005 https://doi.org/10.1039/b414180f
  19. T. Park, M. Lee, J. Choo, Y. S. Kim, E. K. Lee, D. J. Kim, and S. Lee, 'Analysis of Passive Mixing Behavior in a PDMS Microfluidic Channel Using Confocal Fluorescence and Raman Microscopy,' Appl. Spectrosc., vol. 58, pp. 1172-1179, 2004 https://doi.org/10.1366/0003702042336019
  20. M. Lee, J. Lee, H. Rhee, J. Choo, Y. G. Chai, and E. K. Lee, 'Applicability of Laser-Induced Raman Microscopy for In-Situ Monitoring of Imine Formation in a Glass Microfluidic Chip,' J. Raman Specirosc., vol. 34, pp. 737-742, 2003 https://doi.org/10.1002/jrs.1038
  21. J. Jung, J. Choo, D. J. Kim, and S. Lee, 'Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy,' Bull. Kor. Chem. Soc., vol. 27, pp. 277-280, 2006 https://doi.org/10.5012/bkcs.2006.27.2.277
  22. K. Yea, S. Lee, J. Choo, C. H. Oh, and S. Lee, 'Fast and sensitive analysis of DNA hybridization in a PDMS microfluidic channel using fluorescence resonance energy transfer,' Chem. Commun., pp. 1509-1511, 2006 https://doi.org/10.1039/b516253j
  23. S. Kim, L. Chen, S. Lee, G. H. Seong, J. Choo, E. K. Lee, B. S. Chun, D. G. Gweon, S. Park, and C.' H. Oh, 'Rapid DNA Hybridization Analysis Using PDMS Microfluidic Sensor and Molecular Beacon,' (submitted for publication) https://doi.org/10.2116/analsci.23.401
  24. J. Jung, L. Chen, S. Lee, S. Kim, G. H. Seong, J. Choo, E. K. Lee, D. J. Kim, and S. Lee, 'Fast and Sensitive DNA Analysis Using the Changes in FRET Signals of Molecular Beacons in a PDMS Microfluidic Channel,' submitted for publication https://doi.org/10.1007/s00216-007-1158-6
  25. S. A. E. Marras, F. R. Kramer, and S. Tyagi, 'Efficiencies of fluorescence energy transfer and contact- mediated quenching in oligonucleotide probes,' Nucleic Acids Res., vol. 30, pp. 122-129, 2002 https://doi.org/10.1093/nar/gnf121
  26. A. R. C;app, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, 'Can luminescence quantum dots be efficient energy acceptors with organic dye donor?,' J. Amer. Chem. Soc., vol. 127, pp. 1242-1250, 2005 https://doi.org/10.1021/ja045676z
  27. E. Heyduk and T. Heyduk, 'Nucleic acid-based fluorescence sensors for detecting proteins,' Anal. Chem., vol. 77, pp. 1147-1156, 2005 https://doi.org/10.1021/ac0487449
  28. N. Leopold and B. Lendl, 'A new Method for Fast Preparation of Highly SERS Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride,' J. Phys. Chem. B, vol. 107, pp. 5723-5727, 2003 https://doi.org/10.1021/jp027460u
  29. F. T. Docherty, M. Clark G. McNay, D. Graham and W. E. Smith, 'Multiple labeled nanoparticles for bio detection,' Faraday Discuss., vol. 126, pp. 281-288, 2004 https://doi.org/10.1039/b306684c
  30. K. Flauds, W. E. Smith, and D. Graham, 'Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis,' Anal. Chem., vol. 76, pp. 412-417, 2004 https://doi.org/10.1021/ac035060c
  31. T. J. Kim, S. W. Lee, and D. G. Gweon, 'High precision measurement of 3D profile using confocal differential heterodyne interferometer,' J. Opt. Soc. Kor., vol. 9, pp. 22-25, 2005 https://doi.org/10.3807/JOSK.2005.9.1.022
  32. D. K. Kang, H. K. Yoo, S. W. Lee, and D. G. Gweon, 'Lateral resolution enhancement in confocal self-interference microscopy with commercial calcite plate,' J. Opt. Soc. Kor., vol. 9, pp. 32-35, 2005 https://doi.org/10.3807/JOSK.2005.9.1.032

Cited by

  1. FRET for lab-on-a-chip devices — current trends and future prospects vol.10, pp.11, 2010, https://doi.org/10.1039/b924271f
  2. Detection for Particles Moving in Micro Channel with Multifiber Array Sensor vol.132, pp.7, 2012, https://doi.org/10.1541/ieejsmas.132.203
  3. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor vol.681, pp.1-2, 2010, https://doi.org/10.1016/j.aca.2010.09.036
  4. Measuring Particle Positions in Micro Channel with Multifiber Array vol.25, pp.6, 2013, https://doi.org/10.20965/jrm.2013.p1105