Stress Analysis and Fatigue limit Evaluation of Plate with Notch by Lock-In Thermography

Lock-In Thermography를 이용한 노치시험편의 응력해석 및 피로한계치 평가

  • Kim, Won-Tae ;
  • Kang, Ki-Soo (Safety Measurement Group, Korea Research Institute of Standard and Science) ;
  • Choi, Man-Yong (Safety Measurement Group, Korea Research Institute of Standard and Science) ;
  • Park, Jeong-Hak (Safety Measurement Group, Korea Research Institute of Standard and Science) ;
  • Huh, Yong-Hak (Safety Measurement Group, Korea Research Institute of Standard and Science)
  • 김원태 (공주대학교) ;
  • 강기수 (한국표준과학연구원 안전그룹) ;
  • 최만용 (한국표준과학연구원 안전그룹) ;
  • 박정학 (한국표준과학연구원 안전그룹) ;
  • 허용학 (한국표준과학연구원 안전그룹)
  • Published : 2006.10.30

Abstract

This paper describes stress analysis and fatigue limit evaluation of plate with V-notch and hole-notch by lock-in infrared thermography. Temperature variation of a specimen under cyclic loading is negatively proportional to the sum of principle stress change and the surface temperature measured by infrared camera is calculated to the stress of notch specimens, based on thermoelastic equation. And also, fatigue limitation can be evaluated by the change of intrinsic energy dissipation. Fatigue limitation of two notch specimens is evaluated as 164 MPa and 185 MPa, respectively and the stress measured by Lock-in infrared Thermography show good agreement within 10% error.

비접촉 비파괴 응력해석기술인 위상잠금 적외선 열화상기술 (Lock-in infrared Thermography)를 이용하여 V-노치와 원형노치를 갖는 평판의 응력분포해석과 피로한계치를 예측하였다. 반복하중을 받는 시험편의 표면온도 분포를 2차원 열화상으로 측정하고 열탄성효과에 의해 노치 선단에서 응력분포를 예측하였으며 재료의 비가역적 히스테리시스에 의해 발생하는 내재 분산에너지를 측정하여 노치시험편의 피로한계치를 예측하였다. 피로한계응력 이내에서 응력측정 결과는 10% 이내의 정확도를 보였으며, 원형노치와 V-노치 시험편의 피로한계치를 164 MPa과 185 MPa로 예측하였다.

Keywords

References

  1. G. Gaussorgurs, 'Infrared thermography,' translated by Chomet, S., Champman & Hall, London, (1994)
  2. X. P. V. Maldague, 'Trends in optical nondestructive testing and inspection' Rastogi P. K., Inaudi D, Editors, Elsevier Science, Switzerland, (2000)
  3. (社)日本非破壞檢査學會, '赤外線サ-モグラフイによる 設備診斷 . 非破壞評侕ハンドブック,' 廣濟堂, 大, (2004)
  4. M.P., Luong, 'Infrared thermographic scanning of fatigue in metals,' Nuclear Engineering and Design, Vol. 158, pp, 363-376, (1995) https://doi.org/10.1016/0029-5493(95)01043-H
  5. R. Peyroux, A. Chrysochoos, C. Licht, and M, Lobel, 'Thermomechanical couplings and pseudoelasticity of shape memory alloys,' International Journal of Engineering Science, Vol. 36, Issue 4, pp, 489-509, (1998) https://doi.org/10.1016/S0020-7225(97)00052-9
  6. M.P, Luong, 'Fatigue limit evaluation of metals using an infrared thermographic technique,' Mechanics of Materials, Vol. 28, pp. 155-163, (1998) https://doi.org/10.1016/S0167-6636(97)00047-1
  7. P. Bremond, and P. Potet, 'Lock-in thermography: a tool to analyze and locate thermomechanical mechanisms in materials and structures,' Proceedings of SPIE, Vol.. 4360, pp. 560-566, (2001)
  8. W. Thomson, (Lord Kelvin), 'On the dynamic theory of heat,' Trans. Soc. Edinburgh, Vol.. 20, pp. 261-283, (1853) https://doi.org/10.1017/S0080456800033172
  9. M.H. Belgen, 'Structural stress measurement with a infrared radiometer,' ISA Trans., Vol.. 6, pp. 49-53, (1967)
  10. B. Yang, P. K. Liaw, M. Morrison, C. T. Liu, R. A. Buchanan, and J. Y. Huang, 'Temperature eVol.ution during fatigue damage,' Intermetallics, Vol.. 13, pp. 419-428, (2005) https://doi.org/10.1016/j.intermet.2004.07.032