Optimization of Quartz Crystal Microbalance-Precipitation Sensor Measuring Acetylcholinesterase Activity

  • Kim, Nam-Soo (Food Function Research Division, Korea Food Research Institute) ;
  • Park, In-Seon (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Dong-Kyung (Food Function Research Division, Korea Food Research Institute)
  • Published : 2006.10.31

Abstract

The optimization of a batch-type quartz crystal microbalance (QCM)-precipitation sensor measuring acetylcholinesterase (AChE) activity was conducted. To covalently bind AChE onto the gold electrode of a QCM surface, glutaraldehyde cross-linking to a cystamine self-assembled monolayer was tried at different cystamine concentrations. At the optimum conditions of the QCM-precipitation sensor, 0.1 M potassium phosphate buffer (pH 8.0), containing 0.01% Tween 80, was used as the reaction buffer, with the enzyme amount of 5 units for immobilization and the substrate concentration of 50 mg/ml. The current biosensor might find a future applicability to the sum parameter detection on organophosphorus and carbamate pesticides.

Keywords

References

  1. Abad, J. M., F. Pariente, L. Hernandez, H. D. Abruna, and E. Lorenzo. 1998. Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor. Anal. Chem. 70: 2848-2855 https://doi.org/10.1021/ac971374m
  2. Alfonta, L., E. Katz, and I. Willner. 2000. Sensing of acetylcholine by a tricomponent-enzyme layered electrode using faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance transduction methods. Anal. Chem. 72: 927-935 https://doi.org/10.1021/ac990439d
  3. Alfonta, L., A. K. Singh, and I. Willner. 2001. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73: 91-102 https://doi.org/10.1021/ac000819v
  4. Babacan, S., P. Pivarnik, S. Letcher, and A. G. Rand. 2000. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron. 15: 615-621 https://doi.org/10.1016/S0956-5663(00)00115-9
  5. Bachmann, T. T., B. Leca, F. Villatte, J.-L. Marty, D. Fournier, and R. D. Schmid. 2000. Improved multianalyte detection of organophosphates and carbamates with disposable multiresidue biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural network. Biosens. Bioelectron. 15: 193-201 https://doi.org/10.1016/S0956-5663(00)00055-5
  6. Hill, E. F. and W. J. Fleming. 1982. Anticholinesterase poisoning of birds: Field monitoring and diagnosis of acute poisoning. Environ. Toxicol. Chem. 1: 27-38 https://doi.org/10.1897/1552-8618(1982)1[27:APOBFM]2.0.CO;2
  7. Jeyaratnam, J. 1990. Pesticides poisoning: As a major global health problem. World Health Stat. Quarter. 43: 139-144
  8. Karalliedde, L. 1999. Organophosphorus poisoning and anaesthesia. Anaesthesia 54: 1073-1088 https://doi.org/10.1046/j.1365-2044.1999.01061.x
  9. Karousos, N. G., S. Aouabdi, A. S. Way, and S. M. Reddy. 2002. Quartz crystal microbalance determination of organophosphorus and carbamate pesticides. Anal. Chim. Acta 469: 189-196 https://doi.org/10.1016/S0003-2670(02)00668-2
  10. Kim, N., R. Haginoya, and I. Karube 1996. Characterization and food application of an amperometric needle-type L-lactate sensor. J. Food Sci. 61: 286-290 https://doi.org/10.1111/j.1365-2621.1996.tb14177.x
  11. Kim, N., K.-R. Park, I.-S. Park, Y.-J. Cho, and Y. M. Bae. 2005. Application of a taste evaluation system to the monitoring of kimchi fermentation. Biosens. Bioelectron. 20: 2283-2291 https://doi.org/10.1016/j.bios.2004.10.007
  12. Larsen, J. C. and G. Pascal. 1998. Workshop on the applicability of the ADI to infants and children: Consensus summary. Food Addit. Contam. (Suppl) 15: 1-9
  13. Martin, S. P., J. M. Lynch, and S. M. Reddy. 2002. Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance. Biosens. Bioelectron. 17: 735-739 https://doi.org/10.1016/S0956-5663(02)00057-X
  14. Martinez, C. R., R. E. Gonzales, A. M. J. Moran, and H. J. Mendez. 1992. Sensitive method for the determination of organophosphorus pesticides in fruits and surface waters by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. 607: 37-45 https://doi.org/10.1016/0021-9673(92)87052-A
  15. Mulchandani, A., W. Chen, P. Mulchandani, J. Wang, and K. R. Rogers. 2001. Biosensors for direct determination of organophosphate pesticides. Biosens. Bioelectron. 16: 225-230 https://doi.org/10.1016/S0956-5663(01)00126-9
  16. Mulchandani, P., A. Mulchandani, I. Kaneva, and W. Chen. 1999. Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. Biosens. Bioelectron. 14: 77-85 https://doi.org/10.1016/S0956-5663(98)00096-7
  17. Pariente, F., C. LaRosa, F. Galan, L. Hernandez, and E. Lorenzo. 1996. Enzyme support systems for biosensor applications based on gold-coated nylon meshes. Biosens. Bioelectron. 11: 1115-1128 https://doi.org/10.1016/0956-5663(96)82334-7
  18. Park, I.-S., D.-K. Kim, and N. Kim. 2004. Responses of chloramphenicol immunosensor to analyte types. J. Microbiol. Biotechnol. 14: 1157-1162
  19. Park, I.-S. and N. Kim. 1998. Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal. Biosens. Bioelectron. 13: 1091-1097 https://doi.org/10.1016/S0956-5663(98)00067-0
  20. Pylypiw, H. M. 1993. Rapid gas chromatographic method for the multiresidue screening of fruits and vegetables for organochlorine and organophosphate pesticides. J. AOAC Intl. 76: 1369-1373
  21. Pyun, J. C., H. Beutel, J.-U. Meyer, and H. H. Ruf. 1998. Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer. Biosens. Bioelectron. 13: 839-845 https://doi.org/10.1016/S0956-5663(98)00050-5
  22. Rappaport, F., J. Fischl, and N. Pinto. 1959. An improved method for the estimation of cholinesterase activity in serum. Clin. Chim. Acta 4: 227-230 https://doi.org/10.1016/0009-8981(59)90134-2
  23. Reddy, S. M., J. P. Jones, T. J. Lewis, and P. M. Vadgama. 1998. Development of an oxidase-based glucose sensor using thickness-shear mode quartz crystals. Anal. Chim. Acta 363: 203-213 https://doi.org/10.1016/S0003-2670(98)00131-7
  24. Roger, K. R., Y. Wang, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Organophosphorus hydrolase-based fluorescence assay for organophosphate pesticides. Anal. Chem. 65: R40-R54 https://doi.org/10.1021/ac00060a004
  25. Sigma. 2003. Sigma Diagnostics Procedure No. 420 for ChE Assay
  26. Skladal, P. and P. Mascini. 1992. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterases. Biosens. Bioelectron. 7: 335-343 https://doi.org/10.1016/0956-5663(92)85029-A
  27. Volotovskky, V. and N. Kim. 2003. Ion-sensitive field effect transistor-based multienzyme sensor for alternative detection of mercury ions, cyanide, and pesticide. J. Microbiol. Biotechnol. 13: 373-377
  28. Wang, J., L. Chen, A. Mulchandani, P. Mulchandani, and W. Chen. 1999. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11: 866-869 https://doi.org/10.1002/(SICI)1521-4109(199908)11:12<866::AID-ELAN866>3.0.CO;2-1