Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Im Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Baek Sang-Hoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jung-Sook (Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2006.10.31

Abstract

A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.

Keywords

References

  1. Albert, R. A., J. Archambault, R. Rossello-Mora, B. J. Tindall, and M. Matheny. 2005. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int. J. Syst. Evol. Microbiol. 55: 2125-2130 https://doi.org/10.1099/ijs.0.02337-0
  2. Ash, C., J. A. E. Farrow, S. Wallbanks, and M. D. Collins. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA. Lett. Appl. Microbiol. 13: 202-206 https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  3. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  4. Atlas, R. M. 1993. In L. C. Parks (ed.), Handbook of Microbiological Media. CRC Press, Boca Raton, FL
  5. Buck, J. D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993
  6. Claus, D. and R. C. W. Berkeley. 1986. Genus Bacillus Cohn 1872, pp. 1105-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, vol. 2. Williams & Wilkins, Baltimore
  7. Euzeby, J. P. 2006. List of bacterial names with standing in nomenclature. http://www.bacterio.cict.fr/
  8. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229 https://doi.org/10.1099/00207713-39-3-224
  9. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  10. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  11. Fortina, M. G., R. Pukall, P. Schumann, D. Mora, C. Parini, P. L. Manachini, and E. Stackebrandt. 2001. Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int. J. Syst. Evol. Microbiol. 51: 447-455 https://doi.org/10.1099/00207713-51-2-447
  12. Hall, M. G. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  13. Hanna, P. C. and J. A. Ireland. 1999. Understanding Bacillus anthracis pathogenesis. Trends Microbiol. 7: 180-182 https://doi.org/10.1016/S0966-842X(99)01507-3
  14. Heyndrickx, M., L. Lebbe, K. Kersters, P. De Vos, G. Forsyth, and N. A. Logan. 1998. Virgibacillus: A new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int. J. Syst. Bacteriol. 48: 99-106 https://doi.org/10.1099/00207713-48-1-99
  15. Heyrman, J., N. A. Logan, M. Rodryguez-Dyaz, P. Scheldeman, L. Lebbe, J. Swings, M. Heyndrickx, and P. De Vos. 2005. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, reexamination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov. Int. J. Syst. Evol. Microbiol. 55: 119-131 https://doi.org/10.1099/ijs.0.63221-0
  16. Kampfer, P. 1994. Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst. Appl. Microbiol. 17: 86-98 https://doi.org/10.1016/S0723-2020(11)80035-4
  17. Keswani, J. and W. B. Whitman. 2001. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678 https://doi.org/10.1099/00207713-51-2-667
  18. Kim, I. G., J. W. Lee, S. C. Suh, and S. L. Rhim. 2004. Characterization and identification of Bacillus thuringiensis subsp. tenebrionis SR6 and SR8. J. Microbiol. Biotechnol. 14: 772-776
  19. Kim, M. K., W.-T. Im, H. Ohta, M. Lee, and S.-T. Lee. 2005. Sphingopyxis granuli sp. nov., a ${\beta}$-glucosidase producing bacterium in the family Sphingomonadaceae in ${\alpha}$-4 subclass of the Proteobacteria. J. Microbiol. 43: 152-157
  20. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
  21. Kouker, G. and K.-E. Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53: 211-213
  22. Kuhnigk, T., E. M. Borst, A. Breunig, H. Konig, M. D. Collins, R. A. Hutson, and P. Kampfer. 1995. Bacillus oleronius sp. nov., a member of the hindgut flora of the termite 'Reticulitermes santonensis' (Feytaud). Can. J. Microbiol. 41: 699-706 https://doi.org/10.1139/m95-096
  23. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5: 150-163 https://doi.org/10.1186/1471-2105-5-150
  24. Lee, K. Y., H. H. Kwon, E. Y. Kang, M. J. Lee, E. N. Kim, D. W. Chu, S. I. Park, D. B. Ngo, and H. H. Lee. 2004. Characteristics of six new Bacillus thuringiensis serovarieties: B. thuringiensis serovar. coreanensis, leesis, konkukian, seoulensis, sooncheon, and yosoo. J. Microbiol. Biotechnol. 14: 509-514
  25. Logan, N. A., L. Lebbe, A. Verhelst, J. Goris, G. Forsyth, M. Rodriguez-Diaz, M. Heyndrickx, and P. De Vos. 2004. Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island South Sandwich Archipelago. Int. J. Syst. Evol. Microbiol. 54: 373-376 https://doi.org/10.1099/ijs.0.02661-0
  26. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167 https://doi.org/10.1099/00207713-39-2-159
  27. Montanari, G., A. Borsari, C. Chiavari, G. Ferri, C. Zambonelli, and L. Grazia. 2004. Morphological and phenotypical characterization of Bacillus sporothermodurans. J. Appl. Microbiol. 97: 802-809 https://doi.org/10.1111/j.1365-2672.2004.02371.x
  28. Moore, D. D. 1995. Preparation and analysis of DNA. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, U.S.A
  29. Nazina, T. N., T. P. Tourova, A. B. Poltaraus, et al.. 2001. Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433-446 https://doi.org/10.1099/00207713-51-2-433
  30. Oh, S. T., J. K. Kim, S. Y. Yang, and M. D. Song. 2004. Characterization of Bacillus thuringiensis having insecticidal effects against larvae of Musca domestica. J. Microbiol. Biotechnol. 14: 1057-1062
  31. Pettersson, B., F. Lembke, P. Hammer, E. Stackebrandt, and F. G. Priest. 1996. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int. J. Syst. Bacteriol. 46: 759-764 https://doi.org/10.1099/00207713-46-3-759
  32. Roberts, M. S., L. K. Nakamura, and F. M. Cohan. 1994. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence and differences in fatty acid composition. Int. J. Syst. Bacteriol. 44: 256-264 https://doi.org/10.1099/00207713-44-2-256
  33. Roberts, M. S., L. K. Nakamura, and F. M. Cohan. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis isolated from soil in Death Valley California. Int. J. Syst. Bacteriol. 46: 470-475 https://doi.org/10.1099/00207713-46-2-470
  34. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4: 406-425
  35. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI, U.S.A
  36. Shida, O., H. Takagi, K. Kadowaki, and K. Komagata. 1996. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46: 939-946 https://doi.org/10.1099/00207713-46-4-939
  37. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus. Int. J. Syst. Bacteriol. 47: 289-298 https://doi.org/10.1099/00207713-47-2-289
  38. Shin, Y. K., J.-S. Lee, C. O. Chun, H.-J. Kim, and Y.-H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KTCT $1036^T$. J. Microbiol. Biotechnol. 6: 68-69
  39. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  40. Ten, L. N., W.-T. Im, M.-K. Kim, M.-S. Kang, and S.-T. Lee. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Meth. 56: 375-382 https://doi.org/10.1016/j.mimet.2003.11.008
  41. Ten, L. N., W.-T. Im, M.-K. Kim, and S.-T. Lee. 2005. A plate assay for simultaneous screening of polysaccharide-and protein-degrading microorganisms. Lett. Appl. Microbiol. 40: 92-98 https://doi.org/10.1111/j.1472-765X.2004.01637.x
  42. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins. 1997. The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  43. Venkateswaran, K., M. Kempf, F. Chen, M. Satomi, W. Nicholson, and R. Kern. 2003. Bacillus nealsonii sp. nov. isolated from a spacecraft assembly facility, whose spores are c-radiation resistant. Int. J. Syst. Evol. Microbiol. 53: 165-172 https://doi.org/10.1099/ijs.0.02311-0
  44. Waino, M., B. J. Tindall, P. Schumann, and K. Ingvorsen. 1999. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov. as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol. 49: 821-831 https://doi.org/10.1099/00207713-49-2-821
  45. Wayne, L. G., D. J. Brenner, R. R. Colwell, et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  46. Wisotzkey, J. D., P. Jurtshuk Jr., G. E. Fox, G. Deinhard, and K. Poralla. 1992. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int. J. Syst. Bacteriol. 42: 263-269 https://doi.org/10.1099/00207713-42-2-263
  47. Yoon, J.-H., N. Weiss, K.-C. Lee, I.-S. Lee, K. H. Kang, and Y.-H. Park. 2001. Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with $_L$-lysine in the cell wall, and reclassification of Bacillus marinus Ruger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51: 2087-2093 https://doi.org/10.1099/00207713-51-6-2087
  48. Yoon, J.-H., I.-G. Kim, K. H. Kang, T.-K. Oh, and Y.-H. Park. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 53: 1297-1303 https://doi.org/10.1099/ijs.0.02365-0