DOI QR코드

DOI QR Code

Preparation and Sintering Characteristics of Gd-Doped CeO2 Powder by Oxalate Co-Precipitation

옥살산 공침법에 의한 Gd-Doped CeO2 분말의 합성 및 소결 특성

  • Han, In-Dong (School of Materials Science and Engineering, Hongik University) ;
  • Lim, Kwang-Young (School of Materials Science and Engineering, Hongik University) ;
  • Sim, Soo-Man (School of Materials Science and Engineering, Hongik University)
  • 한인동 (홍익대학교 재료공학부) ;
  • 임광영 (홍익대학교 재료공학부) ;
  • 심수만 (홍익대학교 재료공학부)
  • Published : 2006.10.31

Abstract

GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized by oxalate co-precipitation and milling and its thermal decomposition, phase formation, and sinterability were investigated. As-prepared precipitates were non-crystalline due to the milling process and completely decomposed at 400$^{\circ}C$ The powder calcined at 800$^{\circ}C$ for 2 h contained fine p]sty particles with an average size of 0.69 $\mu$m. Attrition milling of the calcined powder for 2 h had a little milling effect, resulting in a slight decrease in the particle size to 0.45 $\mu$m. The milled powder consisted of small spherical primary particles and some large particles, which had been agglomerated during calcination. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 78.7% at 1000$^{\circ}C$ and 97.8% at 1300$^{\circ}C$, respectively. Densification was found to almost complete at temperature above 1200$^{\circ}C$ and a dense and homogeneous microstructure was obtained. A rapid grain growth occurred between 1200$^{\circ}C$ and 1300$^{\circ}C$. Grains in 0.1$\sim$0.5 $\mu$m sizes at 1200$^{\circ}C$ grew to 0.2$\sim$2 $\mu$m and their size distribution became broader at 1300$^{\circ}C$.

Keywords

References

  1. H. Inaba and H. Tagawa, 'Review Ceria-Based Solid Electrolytes,' Solid Sate Ionics, 83 1-16 (1996) https://doi.org/10.1016/0167-2738(95)00229-4
  2. V. V. Kharton, F. M. Figueiredo, L. Navarro, E. N. Naumovich, A. V. Kovalevsky, A. A. Yaremchenko, A. P. Viskup, A. Carneiro, F. M. B. Marques, and J. R. Frade, 'Ceria-Based Materials for Solid Oxide Fuel Cells,' J. Mater. Sci., 36 1105-17 (2001) https://doi.org/10.1023/A:1004817506146
  3. J. Ma, T. S. Zhang, L. B. Kong, P. Hing, and S. H. Chan, '$Ce_{0.8}Gd_{0.2}O_2-\delta$ Ceramics Derived from Commercial Submicron-Sized $CeO_2$ and $Gd_2O_3$ Powders for Use as Electrolytes in Solid Oxide Fuel Cells,' J. Power Sources, 132 71-6 (2004) https://doi.org/10.1016/j.jpowsour.2003.12.029
  4. H. Inaba, T. Nakajima, and H. Tagawa, 'Sintering Behavior of Ceria and Gadolinia-Doped Ceria,' Solid Sate Ionics, 106 263-68 (1998) https://doi.org/10.1016/S0167-2738(97)00496-7
  5. C. M. Kleinlogel and L. J. Gaucker, 'Sintering and Properties of Nanosized Ceria Solid Solutions,' Solid State Ionics, 135 567-73 (2000) https://doi.org/10.1016/S0167-2738(00)00437-9
  6. G. S. Lewis, A. Atkinson, B. C. H. Steele, and J. Drennan, 'Effect of Co Addition on the Lattice Parameter, Electrical Conductivity and Sintering of Gadolinia-Doped Ceria,' Solid State Ionics, 152-153 567-73 (2002) https://doi.org/10.1016/S0167-2738(02)00372-7
  7. T. Zhang, P. Hing, H. Huang, and J. Kilner, 'Sintering and Grain Growth of CoO-Doped $CeO_2$ Ceramics,' J. Eur. Ceram. Soc., 22 27-34 (2002) https://doi.org/10.1016/S0955-2219(01)00240-0
  8. T. S. Zhang, J. Ma, Y. J. Leng, S. H. Chan, P. Hing, and J. A. Kilner, 'Effect of Transition Metal Oxides on Densification and Electrical Properties of Si-Containing $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ Ceramics,' Solid State Ionics, 168 187-95 (2004) https://doi.org/10.1016/j.ssi.2004.02.015
  9. T. S. Zhang, J. Ma, S. H. Chan, and J. A. Kilner, 'Improvements in Sintering Behavior and Grain-Boundary Conductivity of Ceria-Based Electrolytes by a Small Addition of $Fe_2O_3$,' J. Electrochem. Soc., 151 [10] 184-90 (2004) https://doi.org/10.1149/1.1764573
  10. T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, P. Hing, and J. A. Kilner, 'Iron Oxide as an Effective Sintering Aid and a Grain Boundary Scavanger for Ceria-Based Electrolytes,' Solid State Ionics, 167 203-07 (2004) https://doi.org/10.1016/j.ssi.2004.01.006
  11. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, and J. A. Kilner, 'Preparation and Mechanical Properties of Dense $Ce_{0.8}Gd_{0.2} O_{2-\delta}$ Ceramics,' Solid State Ionics, 167 191-96 (2004) https://doi.org/10.1016/j.ssi.2003.11.025
  12. J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, 'Oxalate Coprecipitation of Doped Ceria Powder for Tape Casting,' Ceram. International, 24 229-41 (1998) https://doi.org/10.1016/S0272-8842(97)00007-2
  13. R. S. Torrens, N. M. Sammes, and G. A. Tomsett, 'Characterisation of $(CeO_2)_{0.8}(GdO_{1.5})_{0.2}$ Synthesised Using Various Techniques,' Solid State Ionics, 111 9-15 (1998)
  14. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, Y. J. Leng, S. H. Chan, and J. A. Kilner, 'Sinterability and Ionic Conductivity of Coprecipitated $Ce_{0.8}Gd_{0.2}O_{2-\delta}$ Powders Treated via a High-Energy Ball-Milling Process,' J. Power Sources, 124 26-33 (2003) https://doi.org/10.1016/S0378-7753(03)00625-6
  15. T. S. Zhang, P. Hing, H. Huang, and J. A. Kilner, 'Ionic Conductivity in $CeO_2-Gd_2O_3$ System (0.05 ${\leq}Gd{\leq}$ 0.4) Prepared by Oxalate Coprecipitation,' Solid State Ionics, 148 567-73 (2002) https://doi.org/10.1016/S0167-2738(02)00121-2
  16. K. Higashi, K. Sonoda, H. Ono, S. Sameshima, and Y. Horata, 'Synthesis and Sintering of Rare-Earth-Doped Ceria Powder by Oxalate Coprecipitation Method,' J. Mater. Res., 14 [3] 957-67 (1999) https://doi.org/10.1557/JMR.1999.0127
  17. K. Yamashita, K. V. Ramanujachary, and M. Greenblatt, 'Hydrothermal Synthesis and Low Temperature Conduction Properties of Substituted Ceria Ceramics,' Solid State Ionics, 81 53-60 (1995) https://doi.org/10.1016/0167-2738(95)99031-H
  18. W. Huang, P. Shuk, and M. Greenblatt, 'Properties of Sol- Gel Prepared $Ce_{1-x}Sm_xO_{2-x/2}$ Solid Electrolytes,' Solid State Ionics, 100 23-7 (1997) https://doi.org/10.1016/S0167-2738(97)00309-3
  19. G. B. Jung, T. J. Huang, M. H. Huang, and C. L. Chang, 'Preparation of Samaria-Doped Ceria for Solid-Oxide Feul Cell Electrolyte by a Modified Sol-Gel Method,' J. Mater. Sci., 36 5839-44 (2001) https://doi.org/10.1023/A:1012964307388
  20. R. A. Rocha and E. N. S. Muccillo, 'Physical and Chemical Properties of Nanosized Powders of Gadolina-Doped Ceria Prepared by the Cation Complexation Technique,' Mater. Res. Bull., 38 1979-86 (2003) https://doi.org/10.1016/j.materresbull.2003.09.025
  21. C. Xia and M. Liu, 'Microstructures, Conductiviteis, and Electrochemical Properties of $Ce_{0.9}Gd_{0.1}O_2$ and GDC-Ni Anodes for Low-Temperature SOFCs,' Solid State Ionics, 152-153 423-30 (2002) https://doi.org/10.1016/S0167-2738(02)00381-8
  22. M. F. Bianchetti, R. E. Juarez, D. G. Lamas, N. E. Walsoe de Reca, L. Perez, and E. Cabinillas, 'Synthesis of Nanocrystalline $CeO_2-Y_2O_3$ Powders by a Nitrate-Glycine Gel- Combustion Process,' J. Mater. Res., 17 [9] 2185-88 (2002) https://doi.org/10.1557/JMR.2002.0320

Cited by

  1. Powder by Ammonium Carbonate Co-precipitation vol.49, pp.1, 2012, https://doi.org/10.4191/kcers.2012.49.1.118
  2. Preparation of Ce0.8Gd0.2O1.9 Powder Using CeO2 Powder and Gd Precipitation and Effect of CoO doping on Sintering vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.521