Effect of accelerational perturbations on physical vapor transport crystal growth under microgravity environments

  • Choi, Jeong-Gil (Department of Nano-Bio Chemical Engineering, Hannam University) ;
  • Lee, Kyong-Hwan (Energy Conversion Research Department, Korea Institute of Energy Research) ;
  • Kwon, Moo-Hyun (Department of Chemistry, Woosuk University) ;
  • Kim, Geug-Tae (Department of Nano-Bio Chemical Engineering, Hannam University)
  • Published : 2006.10.31

Abstract

For $P_B=50,\;{\Delta}T=10K$, Ar=5, Pr=2.36, Le=0.015, Pe=1.26, Cv=1.11, the intensity of solutal convection (solutal Grashof number $Grs=3.44x10^4$) is greater than that of thermal convection (thermal Grashof number $Grt=1.81x10^3$) by one order of magnitude, which is based on the solutally buoyancy-driven convection due to the disparity in the molecular weights of the component A($Hg_2Cl_2$) and B(He). With increasing the partial pressure of component B from 10 up to 200 Torr, the rate is decreased exponentially. The convective transport decreases with lower g level and is changed to the diffusive mode at 0.1 $g_0$. In other words, for regions in which the g level is 0.1 $g_0$ or less, the diffusion-driven convection results in a parabolic velocity profile and a recirculating cell is not likely to occur. Therefore a gravitational acceleration level of less than 0.1 $g_0$ can be adequate to ensure purely diffusive transport.

Keywords

References

  1. N.B. Singh, M. Gottlieb, GB. Brandt, A.M. Stewart, R. Mazelsky and M.E. Glicksman, 'Growth and characterization of mercurous halide crystals:mercurous bromide system', J. Crystal Growth 137 (1994) 155 https://doi.org/10.1016/0022-0248(94)91265-3
  2. N.B. Singh, R.B. Hopkins, R. Mazelsky and lJ. Conroy, 'Purification and growth of mercurous chloride single crystals', J. Crystal Growth 75 (1970) 173
  3. S.J. Yosim and S.W. Mayer, 'The mercury-mercuric chloride system', J. Phys. Chem. 60 (1960) 909
  4. B.L. Markham, D.W Greenwell and F. Rosenberger, 'Numerical modeling of diffusive-convective physical vapor transport in cylindrical vertical ampoules', J. Crystal Growth 51 (1981) 426 https://doi.org/10.1016/0022-0248(81)90419-X
  5. WM.B. Duval, 'Convection in the physical vapor transport process-- I: Thermal', J. Chemical Vapor Deposition 2 (1994) 188
  6. A. Nadarajah, F. Rosenberger and J. Alexander, 'Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport', J. Crystal Growth 118 (1992) 49 https://doi.org/10.1016/0022-0248(92)90048-N
  7. H. Zhou, A. Zebib, S. Trivedi and WM.B. Duval, 'Physical vapor transport of zinc-telluride by dissociative sublimation', J. Crystal Growth 167 (1996) 534 https://doi.org/10.1016/0022-0248(96)00305-3
  8. F. Rosenberger, J. Ouazzani, I. Viohl and N. Buchan, 'Physical vapor transport revised', J. Crystal Growth 171 (1997) 270 https://doi.org/10.1016/S0022-0248(96)00717-8
  9. N.B. Singh, R. Mazelsky and M.E. Glicksman, 'Evaluation of transport conditions during PVT: mercurous chloride system', PhysicoChemical Hydrodynamics 11 (1989) 41
  10. G-T. Kim and K.-H. Lee, 'Parametric studies on convection during the physical vapor transport of mercurous chloride ($Hg_{2}CI_{2}$) ' , J. Korean Crystal Growth and Crystal Technology 14 (2004) 281
  11. GT. Kim, 'Convective-diffusive transport in mercurous chloride ($Hg_{2}CI_{2}$) crystal growth', J. Ceramic Processing Research 6 (2005) 110
  12. A. Nadarajah, F. Rosenberger and J. Alexander, 'Modelling the solution growth of TGS crystals in low gravity', J. Crystal Growth 104 (1990) 218 https://doi.org/10.1016/0022-0248(90)90121-Z