Calcium-induced Human Keratinocytes(HaCaT) Differentiation Requires Protein Kinase B Activation in Phosphatidylinositol 3-Kinase-dependent Manner

  • Piao, Longzhen (Cell Signaling Laboratory Cancer Research Institute, Research Institute for Medical Sciences) ;
  • Shin, Sang-Hee (Cell Signaling Laboratory Cancer Research Institute, Research Institute for Medical Sciences) ;
  • Yang, Keum-Jin (Cell Signaling Laboratory Cancer Research Institute, Research Institute for Medical Sciences) ;
  • Park, Ji-Soo (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Shin, Eul-Soon (Department of Clinical Pathology, College of Medicine, Chungnam National University) ;
  • Li, Yu-Wen (Cell Signaling Laboratory Cancer Research Institute, Research Institute for Medical Sciences) ;
  • Park, Kyung-Ah (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Byun, Hee-Sun (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Won, Min-Ho (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Lee, Choong-Jae (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Hur, Gang-Min (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Seok, Jeong-Ho (Department of Dermatology, College of Medicine, Chungnam National University) ;
  • Kim, Ju-Duck (Department of Pharmacology, College of Medicine, Chungnam National University)
  • Published : 2006.09.30

Abstract

The survival and growth of epithelial cells depends on adhesion to the extracellular matrix. An adhesion signal may regulate the initiation of differentiation, since epidermal keratinocytes differentiate as they leave the basement membrane. A metabolically dead cornified cell envelope is the end point of epidermal differentiation so that this process may be viewed as a specialized form of programmed cell death. In order to investigate the precise cellular signaling events loading to terminal differentiation of keratinocytes, we have utilized HaCaT cells to monitor the biological consequences of $Ca^{2+}$ stimulation and numerous downstream signaling pathways, including activation of the extracellular signal-regulated protein kinase(ERK) pathway and activation of phosphatidylinositol 3-kinase(PI3K). The results presented in this study show that $Ca^{2+}$ function as potent agents for the differentiation of HaCaT keratinocytes, and this differentiation depends or the activation of ERK, Protein kinase B(PKB) and p70 ribosomal protein S6 kinase(p70S6K). Finally, the results show that the expression of Activator protein 1(AP-1; c-Jun and c-Fos) increased following $Ca^{2+}$-mediated differentiation of HaCaT cells, suggesting that ERK-mediated AP-1 expression is critical for initiating the terminal differentiation of keratinocytes.

Keywords

References

  1. Angel, P., Szabowski, A. and Schorpp-Kistner, M. (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene, 20, 2413-2423 https://doi.org/10.1038/sj.onc.1204380
  2. Calautti, E., Li, J., Saoncella, S., Brissette, J.L. and Goetinck, P.F. (2005) Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem., 280, 32856-32865 https://doi.org/10.1074/jbc.M506119200
  3. Calautti, E., Missero, C., Stein, P.L., Ezzell, R.M. and Dotto, G.P. (1995) fyn tyrosine kinase is involved in keratinocyte differentiation control. Genes. Dev., 9, 2279-2291 https://doi.org/10.1101/gad.9.18.2279
  4. Candi, E., Schmidt, R. and Melino, G. (2005) The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell. Biol., 6, 328-340 https://doi.org/10.1038/nrm1619
  5. Dashti, S.R., Efimova, T. and Eckert, R.L. (2001a) MEK6 regulates human involucrin gene expression via a p38alpha - and p38delta -dependent mechanism. J. Biol. Chem., 276, 27214-27220 https://doi.org/10.1074/jbc.M100465200
  6. Dashti, S.R., Efimova, T. and Eckert, R.L. (2001b) MEK7- dependent activation of p38 MAP kinase in keratinocytes. J. Biol. Chem., 276, 8059-8063 https://doi.org/10.1074/jbc.C000862200
  7. Deshpande, R., Woods, T.L., Fu, J., Zhang, T., Stoll, S.W. and Elder, J.T. (2000) Biochemical characterization of S100A2 in human keratinocytes: subcellular localization, dimerization, and oxidative cross-linking. J. Invest. Dermatol., 115, 477-485 https://doi.org/10.1046/j.1523-1747.2000.00078.x
  8. Dufourny, B., Alblas, J., van Teeffelen, H.A., van Schaik, F.M., van der Burg, B., Steenbergh, P.H. and Sussenbach, J.S. (1997) Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J. Biol. Chem., 272, 31163-31171 https://doi.org/10.1074/jbc.272.49.31163
  9. Eckert, R.L., Crish, J.F. and Robinson, N.A. (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol. Rev., 77, 397-424 https://doi.org/10.1152/physrev.1997.77.2.397
  10. Eferl, R. and Wagner, E.F. (2003) AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer., 3, 859-868 https://doi.org/10.1038/nrc1209
  11. Efimova, T. and Eckert, R.L. (2000) Regulation of human involucrin promoter activity by novel protein kinase C isoforms. J. Biol. Chem., 275, 1601-1607 https://doi.org/10.1074/jbc.275.3.1601
  12. Filvaroff, E., Calautti, E., Reiss, M. and Dotto, G.P. (1994) Functional evidence for an extracellular calcium receptor mechanism triggering tyrosine kinase activation associated with mouse keratinocyte differentiation. J. Biol. Chem., 269, 21735-21740
  13. Florin, L., Knebel, J., Zigrino, P., Vonderstrass, B., Mauch, C., Schorpp-Kistner, M., Szabowski, A. and Angel, P. (2006) Delayed wound healing and epidermal hyperproliferation in mice lacking JunB in the skin. J. Invest. Dermatol., 126, 902-911 https://doi.org/10.1038/sj.jid.5700123
  14. Gandarillas, A. (2000) Epidermal differentiation, apoptosis, and senescence: common pathways? Exp. Gerontol., 35, 53-62 https://doi.org/10.1016/S0531-5565(99)00088-1
  15. Gandarillas, A., Goldsmith, L.A., Gschmeissner, S., Leigh, I.M. and Watt, F.M. (1999) Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp. Dermatol., 8, 71-79 https://doi.org/10.1111/j.1600-0625.1999.tb00350.x
  16. Goncharova, E.A., Goncharov, D.A., Eszterhas, A., Hunter, D.S., Glassberg, M.K., Yeung, R.S., Walker, C.L., Noonan, D., Kwiatkowski, D.J., Chou, M.M., Panettieri, R.A., Jr. and Krymskaya, V.P. (2002) Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem., 277, 30958-30967 https://doi.org/10.1074/jbc.M202678200
  17. Hess, J., Angel, P. and Schorpp-Kistner, M. (2004) AP-1 subunits: quarrel and harmony among siblings. J. Cell. Sci., 117, 5965-5973 https://doi.org/10.1242/jcs.01589
  18. Hobbs, R.M., Silva-Vargas, V., Groves, R. and Watt, F.M. (2004) Expression of activated MEK1 in differentiating epidermal cells is sufficient to generate hyperproliferative and inflammatory skin lesions. J. Invest. Dermatol., 123, 503-515 https://doi.org/10.1111/j.0022-202X.2004.23225.x
  19. Jochum, W., Passegue, E. and Wagner, E.F. (2001) AP-1 in mouse development and tumorigenesis. Oncogene, 20, 2401-2412 https://doi.org/10.1038/sj.onc.1204389
  20. Johnson, S.A. and Hunter, T. (2005) Kinomics: methods for deciphering the kinome. Nat. Methods, 2, 17-25 https://doi.org/10.1038/nmeth731
  21. Kalinin, A., Marekov, L.N. and Steinert, P.M. (2001) Assembly of the epidermal cornified cell envelope. J. Cell. Sci., 114, 3069-3070
  22. Kalinin, A.E., Kajava, A.V. and Steinert, P.M. (2002) Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays, 24, 789-800 https://doi.org/10.1002/bies.10144
  23. Kaufmann, K. and Thiel, G. (2002) Epidermal growth factor and thrombin induced proliferation of immortalized human keratinocytes is coupled to the synthesis of Egr-1, a zinc finger transcriptional regulator. J. Cell. Biochem., 85, 381-391 https://doi.org/10.1002/jcb.10145
  24. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P.H. and Downward, J. (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Embo. J., 16, 2783-2793 https://doi.org/10.1093/emboj/16.10.2783
  25. King, W.G., Mattaliano, M.D., Chan, T.O., Tsichlis, P.N. and Brugge, J.S. (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol., 17, 4406-4418 https://doi.org/10.1128/MCB.17.8.4406
  26. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 https://doi.org/10.1038/227680a0
  27. Marshall, C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signalregulated kinase activation. Cell, 80, 179-185 https://doi.org/10.1016/0092-8674(95)90401-8
  28. Maruoka, Y., Harada, H., Mitsuyasu, T., Seta, Y., Kurokawa, H., Kajiyama, M. and Toyoshima, K. (1997) Keratinocytes become terminally differentiated in a process involving programmed cell death. Biochem. Biophys. Res. Commun., 238, 886-890 https://doi.org/10.1006/bbrc.1997.7405
  29. Mehic, D., Bakiri, L., Ghannadan, M., Wagner, E.F. and Tschachler, E. (2005) Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J. Invest. Dermatol., 124, 212-220 https://doi.org/10.1111/j.0022-202X.2004.23558.x
  30. Menon, G.K., Grayson, S. and Elias, P.M. (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J. Invest. Dermatol., 84, 508-512 https://doi.org/10.1111/1523-1747.ep12273485
  31. Okuyama, R., Nguyen, B.C., Talora, C., Ogawa, E., Tommasi di Vignano, A., Lioumi, M., Chiorino, G., Tagami, H., Woo, M. and Dotto, G.P. (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1- caspase 3 regulatory mechanism. Dev. Cell., 6, 551-562 https://doi.org/10.1016/S1534-5807(04)00098-X
  32. Peng, X.D., Xu, P.Z., Chen, M.L., Hahn-Windgassen, A., Skeen, J., Jacobs, J., Sundararajan, D., Chen, W.S., Crawford, S.E., Coleman, K.G. and Hay, N. (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev., 17, 1352-1365 https://doi.org/10.1101/gad.1089403
  33. Pillai, S., Bikle, D.D., Mancianti, M.L., Cline, P. and Hincenbergs, M. (1990) Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium. J. Cell. Physiol., 143, 294-302 https://doi.org/10.1002/jcp.1041430213
  34. Polakowska, R.R., Piacentini, M., Bartlett, R., Goldsmith, L.A. and Haake, A.R. (1994) Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Dev. Dyn., 199, 176-188 https://doi.org/10.1002/aja.1001990303
  35. Rendl, M., Ban, J., Mrass, P., Mayer, C., Lengauer, B., Eckhart, L., Declerq, W. and Tschachler, E. (2002) Caspase- 14 expression by epidermal keratinocytes is regulated by retinoids in a differentiation-associated manner. J. Invest. Dermatol., 119, 1150-1155 https://doi.org/10.1046/j.1523-1747.2002.19532.x
  36. Rossler, O.G. and Thiel, G. (2004) Brain-derived neurotrophic factor-, epidermal growth factor-, or A-Raf-induced growth of HaCaT keratinocytes requires extracellular signal-regulated kinase. Am. J. Physiol. Cell. Physiol., 286, C1118-C1129 https://doi.org/10.1152/ajpcell.00301.2003
  37. Sayama, K., Yamasaki, K., Hanakawa, Y., Shirakata, Y., Tokumaru, S., Ijuin, T., Takenawa, T. and Hashimoto, K. (2002) Phosphatidylinositol 3-kinase is a key regulator of early phase differentiation in keratinocytes. J. Biol. Chem., 277, 40390-40396 https://doi.org/10.1074/jbc.M112423200
  38. Schmidt, M., Goebeler, M., Posern, G., Feller, S.M., Seitz, C.S., Brocker, E.B., Rapp, U.R. and Ludwig, S. (2000) Ras-independent activation of the Raf/MEK/ERK pathway upon calcium-induced differentiation of keratinocytes. J. Biol. Chem., 275, 41011-41017 https://doi.org/10.1074/jbc.M003716200
  39. Segrelles, C., Ruiz, S., Perez, P., Murga, C., Santos, M., Budunova, I.V., Martinez, J., Larcher, F., Slaga, T.J., Gutkind, J.S., Jorcano, J.L. and Paramio, J.M. (2002) Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene, 21, 53-64 https://doi.org/10.1038/sj.onc.1205032
  40. Segrelles, C., Ruiz, S., Santos, M., Martinez-Palacio, J., Lara, M.F. and Paramio, J.M. (2004) Akt mediates an angiogenic switch in transformed keratinocytes. Carcinogenesis, 25, 1137-1147 https://doi.org/10.1093/carcin/bgh132
  41. Shaulian, E. and Karin, M. (2001) AP-1 in cell proliferation and survival. Oncogene, 20, 2390-2400 https://doi.org/10.1038/sj.onc.1204383
  42. Tennenbaum, T., Yuspa, S.H. and Kapitulnik, J. (1990) Magnesium and phosphate enrichment of culture medium stimulates the proliferation of epidermal cells from newborn and adult mice. J. Cell. Physiol., 143, 431-438 https://doi.org/10.1002/jcp.1041430305
  43. Tu, C.L., Oda, Y., Komuves, L. and Bikle, D.D. (2004) The role of the calcium-sensing receptor in epidermal differentiation. Cell. Calcium., 35, 265-273 https://doi.org/10.1016/j.ceca.2003.10.019
  44. Watt, F.M., Jordan, P.W. and O'Neill, C.H. (1988) Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA, 85, 5576-5580
  45. Welter, J.F., Crish, J.F., Agarwal, C. and Eckert, R.L. (1995) Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J. Biol. Chem., 270, 12614-12622 https://doi.org/10.1074/jbc.270.21.12614
  46. Yuspa, S.H., Kilkenny, A., Cheng, C., Roop, D., Hennings, H., Kruszewski, F., Lee, E., Strickland, J. and Greenhalgh, D.A. (1991) Alterations in epidermal biochemistry as a consequence of stage-specific genetic changes in skin carcinogenesis. Environ. Health Perspect., 93, 3-10 https://doi.org/10.2307/3431160
  47. Zenz, R. and Wagner, E.F. (2006) Jun signalling in the epidermis: From developmental defects to psoriasis and skin tumors. Int. J. Biochem. Cell. Biol., 38, 1043-1049 https://doi.org/10.1016/j.biocel.2005.11.011