Sphingobacterium composti sp. nov., a Novel DNase-Producing Bacterium Isolated from Compost

  • Ten Leonid N. (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Liu, Qing-Mei (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Im Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Aslam Zubair (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Sung-Taik (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2006.11.30

Abstract

A Gram-negative, strictly aerobic, nonmotile, and nonspore-forming bacterial strain, designated $T5-12^T$, was isolated from compost and characterized using a polyphasic taxonomical approach. The isolate was positive for catalase and oxidase tests. It could degrade DNA, but was negative for degradation of macromolecules such as casein, collagen, starch, chitin, cellulose, and xylan. The DNA G+C content was 36.0 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $iso-C_{15:0}$ (45.6%), $iso-C_{17:0}$ 3OH (17.2%), and summed feature 4 ($C_{16:0}\;{\omega}7c$ and/or $iso-C_{15:0}$ 2OH, 14.9%). Comparative 16S rRNA gene sequence analysis showed that strain $T5-12^T$ fell within the radiation of the cluster comprising members of the genus Sphingobacterium. Strain $T5-12^T$ exhibited lower than 94% of 16S rRNA gene sequence similarity with respect to the type strains of recognized Sphingobacterium species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain $T5-12^T$ ($=KCTC\;12578^T=LMG\;23401^T=CCUG\;52467^T$) should be classified in the genus Sphingobacterium as the type strain of a novel species, for which the name Sphingobacterium composti sp. novo is proposed.

Keywords

References

  1. Atlas, R. M. 1993. In L. C. Parks (ed.). Handbook of Microbiological Media. CRC Press, Boca Raton, Florida
  2. Buck, J. D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993
  3. Cappuccino, J. G. and N. Sherman. 2002. Microbiology: A Laboratory Manual, 6th Ed. Benjamin Cummings, San Francisco
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  5. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  6. Hall, M. G. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  7. Holmes, B., R. J. Owen, and R. E. Weaver. 1981. Flavobacterium multivorum, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. Int. J. Syst. Bacteriol. 31: 21-34 https://doi.org/10.1099/00207713-31-1-21
  8. Holmes, B., R. J. Owen, and D. G. Hollis. 1982. Flavobacterium spiritivorum, a new species isolated from human clinical specimens. Int. J. Syst. Bacteriol. 32: 157-165 https://doi.org/10.1099/00207713-32-2-157
  9. Holmes, B., R. E. Weaver, A. G. Steigerwalt, and D. J. Brenner. 1988. A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: Proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int. J. Syst. Bacteriol. 38: 348-353 https://doi.org/10.1099/00207713-38-4-348
  10. Keswani, J. and W. B. Whitman. 2001. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int. J. Syst. Evol. Microbiol. 51: 667-678 https://doi.org/10.1099/00207713-51-2-667
  11. Kim, M. K., W.-T. Im, H. Ohta, M. Lee, and S.-T. Lee. 2005. Sphingopyxis granuli sp. nov., a ${\beta}$-glucosidase producing bacterium in the family Sphingomonadaceae in ${\alpha}$-4 subclass of the Proteobacteria. J. Microbiol. 43: 152-157
  12. Kim, K.-H., L. N. Ten, Q.-M. Liu, W.-T. Im, and S.-T. Lee. 2006. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int. J. Syst. Bacteriol. (in press)
  13. Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
  14. Kouker, G. and K.-E Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53: 211-213
  15. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5: 150-163 https://doi.org/10.1186/1471-2105-5-150
  16. Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167 https://doi.org/10.1099/00207713-39-2-159
  17. Moore, D. D. 1995. Preparation and analysis of DNA, pp. 2-11. In F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (eds.), Current Protocols in Molecular Biology. Wiley, New York, U.S.A
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molec. Biol. Evol. 4: 406-425
  19. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI. U.S.A
  20. Shin, Y. K., J.-S. Lee, C. O. Chun, H.-J. Kim, and Y.-H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KTCT $1036^T$. J. Microbiol. Biotechnol. 6: 68-69
  21. Shivaji, S., M. K. Ray, S. N. Rao, L. Saisree, M. V. Jagannadham, G. S. Kumar, G. S. N. Reddy, and P. M. Bhargava. 1992. Sphingobacterium antarcticus sp. nov., a psychotrophic bacterium from soils of Schirmacher Oasis, Antarctica. Int. J. Syst. Bacteriol. 42: 102-106 https://doi.org/10.1099/00207713-42-1-102
  22. Steyn, P. L., P. Segers, M. Vancanneyt, P. Sandra, K. Kersters, and J. J. Joubert. 1998. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov., and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov. Int. J. Syst. Bacteriol. 48: 165-177 https://doi.org/10.1099/00207713-48-1-165
  23. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  24. Takeuchi, M. and A. Yokota. 1992. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J. Gen. Appl. Microbiol. 38: 465-482 https://doi.org/10.2323/jgam.38.465
  25. Ten, L. N., W.-T. Im, M.-K. Kim, M.-S. Kang, and S.-T. Lee. 2004. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Meth. 56: 375-382 https://doi.org/10.1016/j.mimet.2003.11.008
  26. Ten, L. N., W.-T. Im, M.-K. Kim, and S.-T. Lee. 2005. A plate assay for simultaneous screening of polysaccharide-and protein-degrading microorganisms. Lett. Appl. Microbiol. 40: 92-98 https://doi.org/10.1111/j.1472-765X.2004.01637.x
  27. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins. 1997. The Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
  28. Tschech, A. and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137: 163-167 https://doi.org/10.1007/BF00414460
  29. Wayne, L. G., D. J. Brenner, R. R. Colwell, et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  30. Widdel, F., G. W. Kohring, and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 3. Characterization of filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286-294 https://doi.org/10.1007/BF00407804
  31. Widdel, F. and F. Bak. 1992. Gram-negative mesophilic sulfate reducing bacteria, pp. 3352-3378. In A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), The Prokaryotes, 2nd Ed. Springer, New York
  32. Yabuuchi, E., T. Kaneko, I. Yano, C. W. Moss, and N. Miyoshi. 1983. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting gram-negative rods in CDC groups IIk-2 and IIb. Int. J. Syst. Bacteriol. 33: 580-598 https://doi.org/10.1099/00207713-33-3-580
  33. Yeo, H. S., O. S. Lee, I. S. Lee, H. S. Kim, T. S. Yu, and Y. J. Jeong. 2004. Gluconacetobacter persimmonis sp. nov., isolated from Korean traditional persimmon vinegar. J. Microbiol. Biotechnol. 14: 276-283