DOI QR코드

DOI QR Code

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes

탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향

  • Seong, Myeong-Seok (Division of Materials Science and Engineering, Pusan National University) ;
  • Oh, Jeong-Seob (Division of Materials Science and Engineering, Pusan National University) ;
  • Lee, Ji-Eon (Division of Materials Science and Engineering, Pusan National University) ;
  • Jung, Seung-Jin (Division of Materials Science and Engineering, Pusan National University) ;
  • Kim, Tae-Sik (Division of Materials Science and Engineering, Pusan National University) ;
  • Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
  • 성명석 (부산대학교 재료공학부) ;
  • 오정섭 (부산대학교 재료공학부) ;
  • 이지언 (부산대학교 재료공학부) ;
  • 정승진 (부산대학교 재료공학부) ;
  • 김태식 (부산대학교 재료공학부) ;
  • 조영래 (부산대학교 재료공학부)
  • Published : 2006.01.27

Abstract

Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

Keywords

References

  1. Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig and R. P. H. Chang, Appl. Phye. Lett., 72, 2912 (1998) https://doi.org/10.1063/1.121493
  2. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, Diamond Relat. Mater., 9, 1184 (2000) https://doi.org/10.1016/S0925-9635(99)00266-6
  3. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  4. J. L. Kwo, Meiso Yokoyama, W. C. Wang, F. Y. Chuang and I. N. Lin, Diamond Relat. Mater., 9, 1270 (2000) https://doi.org/10.1016/S0925-9635(99)00353-2
  5. J. M. Bonard, J. P. Salvetat, T. Stockli and Walt A. de Heer, Appl. Phys. Lett., 73, 918 (1998) https://doi.org/10.1063/1.122037
  6. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller and L. Schlapbach, Phys. Lett., 76, 2071 (2000) https://doi.org/10.1063/1.126258
  7. R. Meyer, Techical Digest, Euro Display, 90, 26 (1990)
  8. S. J. Chung, J. Jang, S. H. Lim, C. H. Lee and B. Y. Moon, SID'01 Digest, 92 (2001)
  9. J. Li, W. Lei and X. Zhang, Appl. Surf. Sci., 220, 96 (2003) https://doi.org/10.1016/S0169-4332(03)00749-9
  10. Y. S. Shi, C. C. Zhu, W. Qikun and L. Xin, Diamond Relat. Mater., 12, 1449 (2003) https://doi.org/10.1016/S0925-9635(03)00170-5
  11. T. J. Vink, M. Gillies, J. C. Knege, and H. W. J. J. van de Laar, Appl. Phys. Lett., 83, 3552 (2003) https://doi.org/10.1063/1.1622789
  12. Y. C. Kim, K. H. Sohn, Y. M. Cho, and E. H. Yoo, Appl, Phys. Lett., 84, 5350 (2004) https://doi.org/10.1063/1.1766403
  13. N. S. Kang, G. J. Kwon, K. H. Shon, K. S. Jeon, E. J. Shin, S. E. Lee, and Y. H. Choi, FEW'05, 217 (2005)
  14. C. C. Lee, B. N. Lin, M. C. Hsiao, Y. Y. Chang, W. Y. Lin and L. Y. Jiang, SID'05 Digest, 1716 (2005) https://doi.org/10.1889/1.2720340
  15. H. Y. Shin, M. S. Seong, T. S. Kim, J. S. Oh, S. J. Jung, J. E. Lee and Y. R. Cho, Kor. J. of Mater. Res., 15, 711 (2005) https://doi.org/10.3740/MRSK.2005.15.11.711