Cloning and Characterization of a Cellulase Gene from a Plant Growth Promoting Rhizobacterium, Bacillus subtilis AH18 against Phytophthora Blight Disease in Red-Pepper

고추역병을 방제하는 PGPR균주 Bacillus subtilis AH18의 항진균성 Cellulase 유전자의 Cloning 및 효소 특성 조사

  • Woo, Sang-Min (Department of Applied Microbiology, Yeungnam University) ;
  • Jung, Hee-Kyoung (Department of Applied Microbiology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology, Yeungnam University)
  • 우상민 (영남대학교 응용미생물학과) ;
  • 정희경 (영남대학교 응용미생물학과) ;
  • 김상달 (영남대학교 응용미생물학과)
  • Published : 2006.12.28

Abstract

Using PCR amplification, we cloned a cellulase gene (ce/H) from the Bacillus subtilis AH18 which has plant growth-promoting activity and antagonistic ability against pepper blight caused by Phytophthora capsici. The 1.6 kb PCR fragment contained the full sequence of the cellulase gene and the 1,582 bp gene deduced a 508 amino acid sequence. Similarity search in protein database revealed that the cellulase of B. subtilis AH18 was more than 98% homologous in the amino acid sequence to those of several major Bacillus spp. The ce/H was expressed in E. coli under an IPTG inducible lac promoter on the vector, had apparent molecular weight of about 55 kDa upon CMC-SDS-PAGE analysis. Partially purified cellulase had not only cellulolytic activity toward carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as Avicel and filter paper (Whatman No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. The optimum pH and temperature of the ce/H coded cellulase were determined to be pH 5.0 and $50^{\circ}C$. The enzyme activity was activated by $AgNO_3$ or $CoCl_2$. However its activity was Inhibited by $HgC1_2$. The enzyme activity was activated by hydroxy urea or sodium azide and inhibited by CDTA or EDTA. The results indicate that the cellulase gene, ce/H is an antifungal mechanism of B. subtilis AH18 against phytophthora blight disease in red-pepper.

식물생육을 촉진하고 고추역병균을 방제하는 다기능 PGPR 균주 Bacillus subtilis AH18 항진균성 cellulase 유전자를 PCR을 이용해 pUC18과 재조합 후 E. coli DH5$\alpha$에 cloning하여 E. coli내에 발현시켰으며, 그 형질전환 균주를 E. coli DH5$\alpha$(pCM 41)이라 명명하였고, 발현된 cellulase를 ce/H라 하였다. E. coli DH5$\alpha$(pCM 41)의 inset 부위는 B. subtilis AH18의 1,582 bp 유전자를 포함하며 cellulase의 유전자는 1,524 bp로 508개의 amino acid가 암호화된 것으로 추정되었고, CMC를 함유한 SDS-PAGE의 방법으로 약 55 kDa의 분자량을 확인하였다. B. subtilis AH18이 가지는 ce/H는 3종의 대표적인 Bacillus spp.들의 cellulase 유전자의 DNA와 아미노산 배열이 98% 이상 유사하였으며, CMC(carboxymethyl-cellulose) 뿐만 아니라, 불용성 섬유소인 Avicel, filter paper(Whatman No. 1) 특히 고추역병균인 Phytophthora capsici의 건조 cell wall도 분해하였다. 또한 colH의 cellulase는 $50^{\circ}C$에서 효소활성이 가장 높았으며, 최적 pH는 pH 6.0이었다. 그리고 $AgNO_3$ 또는 $CoCl_2$ 첨가시 활성이 1.7배, 2배 정도 증가하였고 $HgC1_2$ 첨가시는 활성이 20%까지 떨어졌다. 또한 여러 화학 저해제들 중 Sodium azide 또는 Hydroxy urea는 효소 활성을 증가시켰으며, CDTA 또는 EDIA는 섬유소분해능을 감소시켰다. 이들의 결과는 고추역병균 P. capsici의 생육을 억제하는 B. subtilis AM18의 진균세포벽 용해성 cellula의 효소학적 특성을 구명한 것이라고 할 수 있다.

Keywords

References

  1. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulase. FEMS Microbiol. Rev. 13: 25-58 https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  2. Bisaria, V. S. and T. K. Ghose. 1981. Biodegradation of Cellulosic materials : substrate, microorganisms, exzymes and products. Enz. microbiol. technol. 3: 90-104 https://doi.org/10.1016/0141-0229(81)90066-1
  3. Chung, Y. C., Y. W. Kim, S. K. Kang, J. S. Rho, J. H. Park, and N. K. Sung. 1991. Cloning of Thermophilic Alkalophilic Bacillus sp. F204 Cellulase gene and Its Expression in Escherichia coli and Bacillus subtilis. Kor. J. Food Sci. Technol. 23: 31-36
  4. Daw, I. W. and I. W. Sutherland. 1992. Microbial physiology. 2nd ed. Blackwell Scientific. Lomdon
  5. Gilbert. H. J. and G. P. Hazlewood. 1993. Bacterial cellulase and xylanases. J. Gen. Microbiol. 139: 187-194
  6. Her, S., D. S. Kim, S. J. Choi, and D. H. OH. 1993. Cloning and DNA Sequence of Carboxymethylcellulase(CMCase) Gene from Cellulomonas sp. YE-5. J. Microbiol. Biotechnol. 3: 86-90
  7. Hong, I. P., H. K. Jang, S. Y. Lee, and S. G. Choi. 2003. Cloning and Characterization of a Bifunctional Cellulase-Chitosanase Gene from Bacillus licheniformis NBL420. J. Microbiol. Biotechnol. 13: 35-42
  8. Jung, H. K., J. R. Kim, S. M. Woo, and S. D. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-Producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34: 94-100
  9. Kim, J. H., J. C. Lee, Y. K. Lee, K. H. Kim, S. B. Chun, and K. C. Chung. 1993. Purification and chracterization of carboxymethyl cellulase IV from Penicillium verruculosm. Kor. J. Mycology 21: 28-37
  10. Kim. J. Y., S. H. Hur, and J. H. Hong. 2004. Isolation and chracterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-180. Kor. J. Microbiol. 40: 139-146
  11. Kim. S. H, S. G. Cho, and Y. J. Choi 1997. Purification and characterization of carboxymethyl cellulase from Bacillus stearothermophilus No. 236. J. Microbiol. Biotechnol. 7: 305-309
  12. Kim, S. J., and W. W. Kim. 1982. Studies on the isolation, purification and chracterization of Cx enzyme produced by Pyricularia oryzae C-7. Kor. J. Mycology 10: 67-73
  13. Kim. S. S, S. W. Kwom, S. Y. Lee, S. J. Kim, B. S. Koo, H. Y. Weon, B. Y. Kim, Y. S. Yeo, Y. H. Lim, and S. H. Yoon. 2006. Taxonomy of a soil bacteria YNB54 strain which shows specific antagonistic activities against plant pathogenic phytophthora spp. J. Microbiol. Biotechnol. 34: 101-108
  14. Lee, J. K., K. H. Yoon, B. H. Kim, G. S. Kwon, and S. B. Kim. 1992. Cloning and Expression in Escherichia coli of Cellulase Genes from a Mesophilic Clostridium sp. J. Microbiol. Biotechnol. 2: 50-55
  15. Lim, S. T., Y. Y. Park, S. J. Cho, and H. D. Jun. 1997. Phytopathogenicity of Erwinia carotovora subsp. carotovora LY34 and Procuction of CMCase Isozymes. Kor. J. Appl. Microbiol. Biotechnol. 25: 468-476
  16. Lim, W. J., S. K. Ryu, S. R. Park, M. K. Kim, C. L. An, S. Y. Hong, E. C. Shin, J. Y. Lee, Y. P. Lim, and H. D. Yun. 2005. Cloning of celC, Third Cellulase Gene, from Pectobacterium carotovorum subsp. carotovorum LY34 and its Comparison to Those of Pectobacterium sp. J. Microbiol. Biotechnol. 15: 302-309
  17. Miller, G. L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  18. Park, Y. W., S. T. Lim, K. Y. Kang, and H. D. Yun. 1995. Clonig of CM - cellulase Gene of Rhizobium meliloti TAL1372 in Escherichia coli. J. Kor. Agr. Chem. Soc. 38: 313-319
  19. Sambrook, J., and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Vol. 1, 2, 3. 3th ed. Cold Spring Harbor. New York
  20. Stephen C. Fry. 1989. Cellulase, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol. Plant 75: 532-536 https://doi.org/10.1111/j.1399-3054.1989.tb05620.x
  21. Sul, O. J., D. K. Chungi, I. S. Han, and C. S. Jeong. 2005. Chracterization of Endoglucanase (F-I-III) Purified from Trichoderma sp. C-4. Kor. J. Microbiol. 41: 81-86
  22. Teather, R. and P. J. Wood. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780
  23. Tomme. P., R. A. J. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physoil. 37: 1-81 https://doi.org/10.1016/S0065-2911(08)60143-5
  24. Yoo, K. H. and H. S. Chang. 2002. Purification and chracterization of carboxymethyl cellulase from Stropharia rugosoannulata. Kor. J. Mycology 30: 113-118