Surface and Dielectric Properties of Oriental Lacquer Films Modified by UV-Curable Silicone Acrylate

  • Hong, Jin-Who (Department of Polymer Science & Engineering, Chosun University) ;
  • Kim, Hyun-Kyoung (Department of Polymer Science & Engineering, Chosun University)
  • Published : 2006.12.31

Abstract

In order to achieve an oriental lacquer (OL) film with a thick consistency, UV-curable silicone acrylate (SA) was added to OL by a dual curing process. The addition of 5 wt% UV-curable SA to the OL fomulation enabled the preparation via a single drying step of a $77{\mu}m-thick$ film exhibiting excellent surface properties. FTIR-ATR was used to investigate the effect of UV-curable SA on the behavior of film formation during curing, and the relaxation behavior of the produced films was investigated by dielectric spectroscopy. Dielectric properties were measured in the frequency range $10^{-2}-10^5\;Hz$ at various temperatures between -100 and $200^{\circ}C$. The results demonstrated that OL modified by UV-curable SA has a higher glass transition temperature and stronger secondary relaxation at a lower temperature than the conventional OL system. The OL film modified with UV-curable SA was presumed to be harder at the surface and tougher than conventional OL film.

Keywords

References

  1. D. M. Snyder, J. Chem. Edu., 66, 977 (1989) https://doi.org/10.1021/ed066p977
  2. T. Nakamura, Biochem. Biophysics Res. Commun., 2, 111 (1960) https://doi.org/10.1016/0006-291X(60)90198-4
  3. M. Takada, R. Oshima, Y. Yamauchi, J. Kumanotani, and M. Seno, J. Org. Chem., 53, 3072 (1988)
  4. W. H. Daly and S. Moulay, J. Polym. Sci. Polym. Symp., 74, 227 (1986) https://doi.org/10.1002/polc.5070740120
  5. J. Kumanotani, J. Macromol. Chem., 179, 47 (1978) https://doi.org/10.1002/macp.1978.021790105
  6. E. Obataya , Y. Furuta, Y. Ohno, M. Norimoto, and B. Tomita, J. Appl. Polym. Sci., 83, 2288 (2002) https://doi.org/10.1002/app.2321
  7. R. Oshima, Y. Yamauchi , C. Watanabe, and J. Kumanotani, J. Org. Chem., 50, 613 (1985)
  8. H. W. Starkweather, Macromolecules, 14, 1277 (1981) https://doi.org/10.1021/ma50006a025
  9. A. Livi, G.. Levita, and P. A. Rolla, J. Appl. Polm. Sci., 50, 1583 (1993) https://doi.org/10.1002/app.1993.070500912
  10. G. Hoffmann and S. Poliszko, J. Appl. Polym. Sci., 59, 269 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960110)59:2<269::AID-APP11>3.0.CO;2-S
  11. B. A. Bedeker, Y. Tsujii, N. Ide, Y. Kita, T. Fukuda, and T. Miyamoto, Polymer, 36, 4735 (1995) https://doi.org/10.1016/00323-8619(59)92886-
  12. M. Younes, S. Wartewig, D. Lellinger, B. Strehmel, and V. Strehmel, Polymer, 35, 5269 (1994) https://doi.org/10.1016/0032-3861(94)90479-0
  13. J. W. Hong, H. K. Kim, and J. O. Choi, J. Appl. Polym. Sci., 76, 1804 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000620)76:12<1804::AID-APP11>3.0.CO;2-4
  14. G. Katana, E. W. Fischer, Th. Hack, V. Abetz, and F. Kremer, Macromolecules, 28, 2714 (1995) https://doi.org/10.1021/ma00112a017
  15. R. H. M. Leur, Polymer, 35, 2691 (1994) https://doi.org/10.1016/0032-3861(94)90294-1
  16. I. Alig and G.. P. Johari, J. Polym. Sci. Polym. Phys. B, 31, 299 (1993) https://doi.org/10.1002/polb.1993.090310308
  17. M. S. Graff and R. H. Boyd, Polymer, 35, 1797 (1994) https://doi.org/10.1016/0032-3861(94)90967-9
  18. G. H. Hsiue, R. H. Lee, R. J. Jeng, and C. S. Chang, J. Polym. Sci. Part B, 34, 555 (1996) https://doi.org/10.1002/(SICI)1099-0488(199602)34:3<555::AID-POLB14>3.0.CO;2-H
  19. J. F. Bristow and D. S. Kalika, Macromolecules, 27, 1808 (1994) https://doi.org/10.1021/ma00085a021
  20. R. D. Calleja, I. Devine, L. Gargallo, and D. Radic , Polymer, 35, 151 (1994) https://doi.org/10.1016/0032-3861(94)90064-7
  21. J. S. Hwang, J. Lee, and Y. H. Chang, Macromol. Res., 13, 409 (2005) https://doi.org/10.1007/BF03218474
  22. S. Y. Pyun and W. G. Kim, Macromol. Res., 11, 202 (2003) https://doi.org/10.1007/BF03218354
  23. T. Das, A. K. Banthia, and B. Adhikari, Macromol. Res., 14, 261 (2006) https://doi.org/10.1007/BF03219081