DOI QR코드

DOI QR Code

AFLP에 근거한 서남해안 염생식물 4종 개체군의 최소 보존 면적 결정

Determination on the Minimum Area for Conservation of Four Halophyte Species from the Southwestern Coast of Korea Based on AFLP

  • 발행 : 2006.12.31

초록

서남해안에 자생하고 있는 염생식물 4종, 갈대(Phragmites communis Trin), 칠면초(Suaeda japonica Makino), 갯잔디(Zoysia sinica Hance), 그리고 해홍나물(Suaeda maritima (L.) Dumort)에 대하여 최소 복원 및 보존 면적의 크기를 AFLP (Amplified Fragment Length Polymorphism)기법을 이용한 유전적 다양성 정보에 근거하여 판정하였다. 각 종들의 조사 지역 개체군내에서 유전적 다양성 지수 $\Psi_{ST}$값은 갈대(P. communis)는 0.3856, 칠면초(S. japonica)는 0.1445, 해홍나물(S. maritima)은 0.1669 그리고 갯잔디(Z. sinica) 0.2422을 나타내었다. 칠면초가 0.1445로 가장 낮은 값을 나타내었고 갈대가 0.3856로 가장 높은 값을 나타내었다. 즉, 본 조사 대상 군락 중에서 칠면초 개체군이 가장 높은 유전적 다양성을 나타내었고, 갈대 개체군이 가장 낮은 유전적 다양성을 나타내는 것으로 판단되었다. 한편, 각 개체군별 단위 면적당 유전적 다양성 지수에 근거한 최소 복원 및 보존 면적은 갈대(P. communis)는 $500{\times}500m^2$, 칠면초(S. japonica), 해홍나물(S. maritima), 그리고 갯잔디(Z. sinica)들은 각각 $100\times100m^2$로 판정되었다.

To determine the minimum area for conservation of four Halophytic species populations, we evaluate the genetic diversity of four species based on the AFLP method using thirteen primer sets. Four species populations, Phragmites communis Trin, Suaeda japonica Makino, Zoysia sinica Hance, and S. maritima (L.) Dumort, from the southwestern coast of Korea, were selected for this study. The genetic diversity index ($\Psi_{ST}$) of Phragmites communis was 0.3856, Suaeda japonica 0.1445, Suaeda maritima 0.1669, and Zoysia sinica 0.2422. Based on the genetic diversity of population, we could determine the minimum area for conservation of each species as follows. P. communis needs $500{\times}500m^2$, S. japonica, S. maritima, and Z. sinica $100\times100m^2$ for keeping their genetic identity.

키워드

참고문헌

  1. Choi H-G, Kim C. 2000. Conservational strategy of Ranunculuc kazusensis in Korea. In pro. of Intl. Symp. On Ecotechnology in Enviromental Protection and Fresh water lake management. Res Inst Natl Sci, Pai Chai Uni pp13-21
  2. Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491
  3. Hedren M, Fay MF, Chase MW. 2001. Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Am J Bot 88: 1868-1880 https://doi.org/10.2307/3558363
  4. Ihm B-S, Myung H-H, Park D-S, Lee J-Y, Lee J-S. 2004. Morphological and genetic variations in Suaeda maritima based on habitat. J Plant Biol 47: 221-229 https://doi.org/10.1007/BF03030512
  5. Krauss SL. 2000. Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Molecular Ecology 9: 1241-1245 https://doi.org/10.1046/j.1365-294x.2000.01001.x
  6. Lindstedt B-A, Heir E, Vardund T, Melby KK, Kapperud G. 2000. Comparative fingerprinting analysis of Campylobacter jejuni subsp. jejuni strains by Amplified-Fragment Length Polymorphism Genotyping. J Clinical Micro 38: 3379-3387
  7. Liston A, Wilson BL, Robinson WA, Doescher PS, Harris NR, Svejcarr T. 2003. The relative importance of sexual reproduction versus clonal spread in an aridland bunchgrass. Oecologia 137: 216-225 https://doi.org/10.1007/s00442-003-1332-2
  8. Miller MP. 1998. AMOVA-PREP ver. 1.01. North Arizona University, Flagstaff, AZ
  9. Qamaruz-Zaman F, Fay MF, Parker JS, Chase MW. 1998. The use of AFLP fingerprinting in conservation genetics: a case study of Orchis simia (Orchidaceae). Lindleyana 13: 125-133
  10. Wright S. 1965. The interpretation of population structure by F-statistics with special regards to systems of mating. Evolution 19: 395-420 https://doi.org/10.2307/2406450
  11. Samils B, Stepien V, Lagercrantz U, Lascoux M, Gullberg U. 2001. Genetic diversity in relation to sexual and asexual reproduction in populations of Melampsora larici-epitea. Eur J Plant Pathol 107: 871-881 https://doi.org/10.1023/A:1013121809990