DOI QR코드

DOI QR Code

Optimum Depth and Volume Ratio of Aerobic to Anaerobic Bed for Development of Small-Scale Sewage Treatment Apparatus by Natural Purification Method

자연정화공법에 의한 소형 하수처리장치 개발을 위한 최적 깊이 및 호기.혐기 비율

  • Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Mi-Ryoung (Division of Applied Life Science, Gyeongsang National University) ;
  • Kwak, Nae-Woon (Division of Applied Life Science, Gyeongsang National University) ;
  • Hwang, Ha-Na (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Hong-Jae (Department of Environmental Engineering, Jinju National University) ;
  • Cho, Ju-Sik (Division of Applied Life and Environmental Sciences, Sunchon National University) ;
  • Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University)
  • 서동철 (경상대학교 응용생명과학부) ;
  • 박미령 (경상대학교 응용생명과학부) ;
  • 곽내운 (경상대학교 응용생명과학부) ;
  • 황하나 (경상대학교 응용생명과학부) ;
  • 이홍재 (진주산업대학교 환경공학과) ;
  • 조주식 (순천대학교 생명환경과학부) ;
  • 허종수 (경상대학교 응용생명과학부)
  • Published : 2006.03.31

Abstract

To develop small-scale sewage treatment apparatus for detached house of agricultural village, a small-scale sewage treatment apparatus by natural purification method that consisted of aerobic and anaerobic bed was constructed. To reduce the area of a sewage treatment apparatus, four different fitter media were used and each filter medium was coarse sand, broken stone, steel slag, and mixed fitter media (coarse sand : broken stone : steel slag = 1:1:1). The efficiency of sewage treatment according to the depth of aerobic and anaerobic bed and the volume ratio of aerobic to anaerobic bed were investigated in small-scale sewage treatment apparatus. The removal rate of pollutants according to the depth of aerobic and anaerobic bed in small-scale sewage treatment apparatus was high in the order of 50 cm < 70 cm < 90 cm. The removal rate of pollutants according to the ratio of aerobic to anaerobic bed in small-scale sewage treatment apparatus was high in the order of 1:1 < 1:2 $\fallingdotseq$ 1:3. Under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P were $98{\sim}99,\;95{\sim}97,\;99,\;65{\sim}66\;and\;96{\sim}99%$ respectively, in small-scale sewage treatment apparatus.

자연정화공법에 의한 농촌 전원 독립가구 하수처리장치의 적정 설치방법을 결정하기 위하여 호기성조와 혐기성조로 구성된 소형 하수처리장치를 설계 및 시공하였다. 소형 하수처리장치에서 여재 깊이에 따른 수처리 효율을 조사한 결과 호기성조와 혐기성조 모두 여재의 깊이가 깊어질수록 수처리 효율이 증가함으로 여재의 깊이를 90 cm이상으로 하는 것이 좋을 것으로 판단된다. 소형 하수처리장치의 최적 깊이인 90 cm하에서 호기성조 대 혐기성조 비율에 따른 수처리 효율을 조사한 결과 모든 여재에서 1 : 2 및 1 : 3의 호기 혐기 비율이 1 : 1에 비해 약간 높은 경향이었다. 따라서 소형 하수처리장치에서의 최적조건은 여재의 깊이는 90 cm이었고, 호기 혐기 비율은 1 : 2의 비율이었으며, 최적 여재는 왕사와 쇄석이었으며, 최적조건하에서 수처리효율은 BOD가 $97{\sim}99%$, COD가 $87{\sim}97%$, SS가 $88{\sim}99%$, T-N이 $57{\sim}68%$ 및 T-P가 $96{\sim}99%$이었다. 따라서 이러한 조건을 자연정화공법을 이용한 하수처리장치에 적용하면 하수처리장치의 부지면적을 최대한 줄이면서 높은 하수처리효율을 유지할 수 있을 것으로 판단된다.

Keywords

References

  1. 안원식(1996) 하천계획의 현황과 문제점. Magazine of Korea Water Resources Association 29(2), 17-20
  2. Kwun, S. K. and Yoon, C. G. (1999) Performance for a small on - site wastewater treatment system using the absorbent biofilter in rural areas. Kor. J. Environ. Agric. 18(4), 310-315
  3. Jun, M. S. and Kim, B. C. (1994) The effect of nutrients concentration upon the growth of water hyacinth. J. KSWQ 10(2), 128-135
  4. Ministry of Environment (2000) White paper on the environment. Ministry of Environment 357-486
  5. 임봉수, 김재식, 이창균, 정금희(2004) 단독정화조 오수처리 실태에 관한 연구. 대한환경공학회 2004춘계 학술발표초록집 1305-1306
  6. Seo, D. C. (2002) Development of sewage treatment apparatus by natural purification method. Master Thesis. Gyeongsang National University of Education. Korea
  7. Lim, S. C. (2003) Efficiency of sewage treatment by improvement of water treatment system in environmentally friendly constructed wetland. Master Thesis, Gyeongsang National University of Education. Korea
  8. APHA, AWWA, WCF (1995) Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC,4-112
  9. 김종택(1996) 수질오염공정시험방법해설. 신광출판사
  10. Geisler, G. (1965) The morphogenetic effect of oxygen on root. Plant Physiol 40, 85-88 https://doi.org/10.1104/pp.40.1.85
  11. Richardson. C. J. and Marshall. P. E. (1986) Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56, 279-302 https://doi.org/10.2307/1942548
  12. Yoon, C. G., Kwun, S. K., Woo, S. H., and Kwon, T. Y. (1999) Review of 3 year experimental data from treatment wetland for water quality improvement in rural area. J. KSWQ 15(4), 581-589
  13. Yoon, C. G., Kwun, S. K., and Kwun, T. Y. (1998) Feasibity Study of Constructed Wetland for the Wastewater Treatment in Rural Area. The Korean Society of Agricultural Engineers 40(3), 83-93
  14. Lee, D. B., Kim, J. G., Kang, J. G., Kim, S. K., So, J. D., and Rhee, K. S. (1994) Purification of animal wastewater using a reed-sand-filter system - I. retention period and seasonal variation-. Kor. J. Environ. Agric. 13(2), 231-239
  15. 첨단환경기술 (1996) 정석법에 의한 하.폐수중의 인제 거. 첨단환경기술
  16. Ferguson. J. F. and King, T. (1977) A model for aluminum phosphate precipitation. J. Water control Pollt. Fed. 49(4), 646-658
  17. Choi, K. J. and Wang, C. K. (1999) Development of process for phosphorus removal from water using clamshell. Res. Rep. Env. Sci. Tech, Chungnam Nat'l Univ., Korea 17, 37-49
  18. 양홍모 (1999) 수자원보전을 위한 점원 및 비점원 오염물의 자연생태적 친환경적 처리 인공습지 및 연못-습지 시스템. Magazine of Korea Water Resources Association 32(5), 111-123
  19. Huang, J., Reneau, Jr. R. B., and Hagedorn, C. (2000) Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Wat. Res. 34(9), 2582-2588 https://doi.org/10.1016/S0043-1354(00)00018-X

Cited by

  1. Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags vol.33, pp.3, 2014, https://doi.org/10.5338/KJEA.2014.33.3.169
  2. Evaluation of 2- and 3-stage combinations of vertical and horizontal flow constructed wetlands for treating greenhouse wastewater vol.32, pp.2, 2008, https://doi.org/10.1016/j.ecoleng.2007.10.007
  3. Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations vol.162, 2015, https://doi.org/10.1016/j.agwat.2015.08.001
  4. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10
  5. Growth Characteristic and Nutrient Uptake of Water Plants in Constructed Wetlands for Treating Livestock Wastewater vol.31, pp.4, 2012, https://doi.org/10.5338/KJEA.2012.31.4.351