In Vitro Antifungal Activities of 13 Fungicides against Pepper Anthracnose Fungi

고추 탄저병균에 대한 13종 살균제의 살균 활성

  • Choi, Yong-Ho (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung-Tae (Depatment of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Kim, Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Cho, Kwang-Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung-Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • 최용호 (한국화학연구원 생물기능연구팀) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 김진철 (한국화학연구원 생물기능연구팀) ;
  • 장경수 (한국화학연구원 생물기능연구팀) ;
  • 조광연 (한국화학연구원 생물기능연구팀) ;
  • 최경자 (한국화학연구원 생물기능연구팀)
  • Published : 2006.03.31

Abstract

For the effective control of pepper anthracnose, in vitro antifungal activities of 13 commercial fungicides were tested on spore germination, mycelial growth, and sporulation of Colletotrichum gloeosporioides, anthracnose fungus. Among them, captan, chlorothalonil, dithianon, fluazinam and folpet completely inhibited the spore germination of C. gloeosporioides at the concentration of 0.8 ${\mu}g/ml$. They were followed by mancozeb and propineb, showing more than 80% inhibition of spore germination at 20 ${\mu}g/ml$. The mycelial growth of C. gloeosporioides was strongly inhibited by fluazinam and nuarimol. Except for nuarimol, most of the fungicides represented more antifungal activity on the spore germination than the mycelial growth of C. gloeosporioides. Azoxystrobin and metominostrobin, Strobilurin fungicides, were only moderately active against the spore germination and the mycelial growth of C. gloeosporioides, but they were effective antisporulant against C. gloeosporioides. From these results, control of pepper anthracnose will have achieved by preventive spray of the commercial fungicides.

효율적인 고추 탄저병 방제를 위하여, Colletotrichum gloeosporioides에 대한 살균제 13종의 포자 발아, 균사 생장 및 포자 형성 억제효과를 실험하였다. 이들 살균제 중 captan과 chlorothalonil, dithianon, fluazinam 및 folpet은 0.8 ${\mu}g/ml$ 농도에서 C. gloeosporioides 포자의 발아를 완전히 억제하였다. 이들 살균제 보다 억제효과는 낮았으나, mancozeb와 propineb도 20 ${\mu}g/ml$에서 80% 이상의 포자 발아 억제율을 나타내었다. 고추 탄저병균의 균사 생장은 fluazinam과 nuarimol에 의해 강하게 억제되었다. Nuarimol을 제외한 살균제들은 C. gloeosporioides의 균사 생장보다 포자 발아를 더 효과적으로 억제하였다. 그리고 Strobilurin계 살균제인 azoxystrobin과 metominostrobin은 고추 탄저병균의 포자 발아와 균사 생장에 대한 억제효과는 낮았으나, 포자 형성을 효과적으로 억제하였다. 그러므로 nuarimol을 제외한 이들 살균제를 이용한 고추 탄저병 방제는 주로 예방적으로 약제를 처리하여야 할 것으로 생각되었다.

Keywords

References

  1. Avila-Adame, C. and W. Koller (2003) hnpact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. Pest Manag. Sci. 59:303-309 https://doi.org/10.1002/ps.638
  2. Bartlett, D. W., J. M. Clough, J. R. Godwin, A. A. Hall, M. Hamer and B. Parr-Dobrzanski (2002) The strobilurin fungicides. Pest Manag. Sci. 58:649-662 https://doi.org/10.1002/ps.520
  3. Cho, S.-J., S. K. Lee, B. J. Cha, Y. H. Kim and K.-S. Shin (2003) Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223:47-5 https://doi.org/10.1016/S0378-1097(03)00329-X
  4. Edgington, L. V. (1981) Structural requirements of systemic fungicides. Ann. Rev. Phytopathol. 19:107-124 https://doi.org/10.1146/annurev.py.19.090181.000543
  5. Freeman, S., D. Minz, I. Kolesnik, O. Barbul, A. Zveibi1, M. Maymon, Y. Nitzani, B. Kirshner, D. Rav-David, A. Bilu, A. Dag, S. Shafir and Y. Elad (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 110:361-370 https://doi.org/10.1023/B:EJPP.0000021057.93305.d9
  6. Fuchs A. and C. A. Drandarevski (1973) Wirkungsbreite und Wirkungsgrad von Triforine in vitro und in vivo. Z. Pflanzenkrankh. Pflanzenschutz 80:403-417
  7. Goffinet, M. C. and R. C. Pearson (1991) Anatomy of russeting induced in Concord grape berries by the fungicide chlorothalonil. Am. J. Enol. Vitic. 42:281-289
  8. Grayson B. T., D. M. Batten and D. Walter (1996a) Adjuvant effects on the therapeutic control of potato late blight by dimethomorph wettable powder formulations. Pestic. Sci. 46:355-359 https://doi.org/10.1002/(SICI)1096-9063(199604)46:4<355::AID-PS364>3.0.CO;2-U
  9. Grayson B. T., J. D. Webb, D. M. Batten and D. Edwards (1996b) Effect of adjuvants on the therapeutic activity of dimethomorph in controlling vine downy mildew. J. Survey of adjuvant types. Pestic. Sci. 46:199-206
  10. Grayson B. T., P. J. Price and D. Walter (1997) Effects of adjuvants on the performance of a novel powdery mildew fungicide, 1-(4-chlorobenzyl)-4-phenylpiperi dine. Pestic. Sci. 51:206-212 https://doi.org/10.1002/(SICI)1096-9063(199710)51:2<206::AID-PS624>3.0.CO;2-F
  11. Guo, Z., H. Miyoshi, T. Komyoji, T. Haga and T. Fujita (1991) Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2, 6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine). Biochem. Biophys. Acta 1056:89-92 https://doi.org/10.1016/S0005-2728(05)80077-5
  12. Hong, J. K. and B. K. Hwang (1998) Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of pepper plants by Colletotrichum coccodes. Plant Dis. 82: 1079-1083 https://doi.org/10.1094/PDIS.1998.82.10.1079
  13. Kato, T., M. Shoami and Y. Kawase (1980) Comparison of triadimorph with buthiobate in antifungal mode of action. J. Pestic. Sci. 5:69-79 https://doi.org/10.1584/jpestics.5.69
  14. Kerkenaar, A. and D. Barug (1984) Fluorescence microscopic studies of Ustilago maydis and Penicillium italicum after treatment with imazalil and fenpropimorph. Pestic. Sci. 15:199-205 https://doi.org/10.1002/ps.2780150211
  15. Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park and Y.-T. Chi (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97:942-949 https://doi.org/10.1111/j.1365-2672.2004.02356.x
  16. Manandhar, J. B., G. L. Hartman and T. C. Wang (1995) Anthracnose development on pepper fruits inoculated with Colletotrichum gloeosporioides. Plant Dis. 79:380-383 https://doi.org/10.1094/PD-79-0380
  17. Miguez, M., C. Reeve, P. M. Wood and D. W. Hollomon (2003) Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola to QOI fungicides. Pest Manag. Sci. 60:3-7
  18. Park K. S. and C. H. Kim (1992) Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Korean J. Plant Pathol. 8:61-69
  19. Park, W. M., S. H. Kim and Y. H. Ko (1989) Susceptibilization of a red pepper (Capsicum annuum L.) to Colletotrichum gloeosporioides Penz. in relation to the ripening of fruits. Kor. J. Plant Pathol. 5:262-270
  20. Schwinn, F. and T. Staub (1995) Oomycetes fungicides 16.1 Phenylamides and other fungicides against Oomycetes. pp.323-346, In Modem Selective Fungicides-Properties, Applications, Mechanisms of Action(ed Horst Lyr), Gustav Fischer Verlag, lena, Stuttgart, New York
  21. Tomlin, C. D. S. (2003) The pesticide manual. BCPC p1344
  22. Wood, P. M. and D. W. Hollomon (2003) A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the Qo site of complex III. Pest Manag. Sci. 59:499-511 https://doi.org/10.1002/ps.655
  23. Yamaguchi, I. and M. Fujimura (2005) Recent topics on action mechanisms of fungicides. J. Pestic. Sci. 30:67 https://doi.org/10.1584/jpestics.30.67
  24. 김완규, 조의규, 이은종 (1986) 고추탄저병균 Colletotrichum gloeosporioides Penz.의 2계통. 한국식물병리학회지 2:107-113
  25. 백수봉, 김동우 (1995) 고추탄저병(Colletotrichum gloeosporioides) 방제를 위한 엽권 길항미생물의 탐색. 한국균학회지 23:190-195
  26. 오인석, 인무성, 우인식, 이성구, 유승헌 (1988) Colletotrichum coccodes(Sallr.) Hughes에 의한 고추유묘탄저병. 한국균학회지 16:151-156