Sildenafil Citrate Induces Migration of Mouse Aortic Endothelial Cells and Proteinase Secretion

  • Kim, Young-Il (Department of Physical Education, Yonsei University) ;
  • Oh, In-Suk (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Park, Seung-Moon (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
  • Published : 2006.10.30

Abstract

Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by $NF-{\kappa}B$ inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by PI 3'-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.

Keywords

References

  1. Sanchez, L. S., S. M. de la Monte, G. Filippov, R. C. Jones, W. M. Zapol, and K. D. Bloch (1998) Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development. Pediatr. Res. 43: 163-168
  2. Lucas, K. A., G. M. Pitari, S. Kazerounian, I. Ruiz-Stewart, J. Park, S. Schultz, K. P. Chepenik, and S. A. Waldman (2000) Guanylyl cyclase and signaling by cyclic GMP. Pharmacol. Rev. 52: 375-414
  3. Goldstein, I., T. F. Lue, H. Padma-Nathan, R. C. Rosen, W. D. Steers, and P. A. Wicker (1998) Oral sildenafil in the treatment of erectile dysfunction. N. Engl. J. Med. 338: 1397-1404 https://doi.org/10.1056/NEJM199805143382001
  4. Wallis, R. M., J. D. Corbin, S. H. Francis, and P. Ellis (1999) Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile response of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol. 83: 3-12
  5. Risau, W. (1997) Mechanisms of angiogenesis. Nature 386:671-674 https://doi.org/10.1038/386671a0
  6. Folkman, J. and Y. Shing (1992) Angiogenesis. J. Biol. Chem. 267: 10931-10934
  7. Brooks, P. C, S. Silletti, T. L. von Schalscha, M. Fried-lander, and D. A. Cheresh (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92: 391-400 https://doi.org/10.1016/S0092-8674(00)80931-9
  8. Lee J. B., J. S. Bae, J. H. Choi, J. H. Ham, Y. K. Min, H. M. Yang, T. Othman, and K. Shimizu (2004) Anticancer efficacies of doxorubicin, verapamil and quercetin on FM3A cells under hyperthermic temperature. Biotechnol. Bioprocess Eng. 9: 261-266 https://doi.org/10.1007/BF02942341
  9. Frederick, J. and J. F. Woessner, Jr. (1988) The matrix metalloproteinase family, pp. 1-14. In: W. C. Parks and R. P. Mecham (eds.). Matrix Metalloproteinases. Academic Press, London, UK
  10. Stetler-Stevenson, W. G. (1999) Matrix metallopro-teinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103: 1237-1241 https://doi.org/10.1172/JCI6870
  11. Nagase, H. (1997) Activation mechanisms of matrix met-alloproteinases. Biol. Chem. 378: 151-160
  12. Haris, S. G. and M. L. Shuler (2003) Growth of endothelial cells on microfabricated silicon nitride membranes for an in vivo model of the blood-brain barrier. Biotechnol. Bioprocess Eng. 8: 246-251 https://doi.org/10.1007/BF02942273
  13. Oh, I. S. and H. G. Kim (2004) Vascular endothelial growth factor upregulates follistatin in human umbilical vein endothelial cells. Biotechnol. Bioprocess Eng. 9: 201-206 https://doi.org/10.1007/BF02942293
  14. Oh, I. S., J. W. Han, and H. G. Kim (2005) Water extracts of Aralia elata root bark enhances migration and matrix metalloproteinases secretion in porcine coronary artery endothelial cells. Biotechnol. Bioprocess Eng. 10: 372-377 https://doi.org/10.1007/BF02931858
  15. Rosen, E. M., L. Meromsky, E. Setter, D. W. Vinter, and I. D. Goldberg (1990) Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp. Cell Res. 186: 22-31 https://doi.org/10.1016/0014-4827(90)90205-O
  16. Kleiner, D. E., I. M. K. Margulis, and W. G. Stetler-Stevenson (1998) Proteinase assay/zymography. pp. 5A7.1-5A7.8. In: A. Doyle, J. B. Griffiths, and D. G. Newell (eds.). Cell and Tissue Culture: Laboratory Procedures. John Wiley and Sons, Sussex, UK
  17. Lee, Y. M., H. Kim, E. K. Hong, B. H. Kang, and S. J. Kim (2000) Water extract of 1:1 mixture of Phellodendron cortex and Aralia cortex has inhibitory effects on oxidative stress in kidney of diabetic rats. J. Ethnopharmacol. 73: 429-436 https://doi.org/10.1016/S0378-8741(00)00302-0
  18. Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko, and S. J. Weiss (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365-377 https://doi.org/10.1016/S0092-8674(00)81768-7
  19. Brown, M. D. and O. Hudlicka (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6: 1-14 https://doi.org/10.1023/A:1025809808697
  20. DeClerck, Y. A., T. D. Yean, H. S. Lu, J. Ting, and K. E. Langley (1991) Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2. J. Biol. Chem. 266: 3893-3899
  21. Ward, R. V., R. M. Hembry, J. J. Reynolds, and G. Murphy (1991) The purification of tissue inhibitor of metallopro-teinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1. Biochem. J. 278: 179-187 https://doi.org/10.1042/bj2780179
  22. Hajjar, K. A. (1995) Changing concepts in fibrinolysis. Curr. Opin. Hematol. 2: 345-350 https://doi.org/10.1097/00062752-199502050-00004
  23. Lijnen, H. R. (2001) Plasmin and matrix metalloproteinases in vascular remodeling. Thromb. Haemost. 86: 324-333
  24. He, C. S., S. M. Wilhelm, A. P. Pentland, B. L. Marmer, G. A. Grant, A. Z. Eisen, and G. I. Goldberg (1989) Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. USA 86: 2632-2636
  25. Baramova, E. N., K. Bajou, A. Remade, C. L'Hoir, H. W Krell, U. H. Weidle, A. Noel, and J. M. Foidart (1997) Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation. FEBS Lett. 405: 157-162 https://doi.org/10.1016/S0014-5793(97)00175-0
  26. Kim, H. G. and G. Y. Koh (2000) Lipopolysaccharide activates matrix metalloproteinase-2 in endothelial cells through an NF-kB-dependent pathway. Biochem. Biophys. Res. Commun. 269: 401-405 https://doi.org/10.1006/bbrc.2000.2308
  27. Fini, E. M., J. R. Cook, R. Mohan, and C. E. Brinckerhoff (1988) Regulation of matrix metalloproteinase gene expression. pp. 299-356. In: W. C. Parks and R. P. Mecham (eds.). Matrix Metalloproteinase. Academic Press, London, UK
  28. Folkman, J. and P. A. D'Amore (1996) Blood vessel formation: what is its molecular basis? Cell 87: 1153-1155 https://doi.org/10.1016/S0092-8674(00)81810-3
  29. Veikkola, T and K. Alitalo (1999) VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9: 211-220 https://doi.org/10.1006/scbi.1998.0091
  30. Hanahan, D. (1997) Signaling vascular morphogenesis and maintenance. Science 277: 48-50 https://doi.org/10.1126/science.277.5322.48