Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions

  • Cho, Churl-Hee (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Yeo, Jeong-Gu (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Ahn, Young-Soo (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Han, Moon-Hee (Functional Materials Research Center, Korea Institute of Energy Research) ;
  • Hyun, Sang-Hoon (Department of Ceramic Engineering, Yonsei University)
  • Published : 2006.12.31

Abstract

A faujasite NaY zeolite membrane was prepared on a tubular ${\alpha}-Al_2O_3$ support by the secondary growth process, and effects of permeation test conditions on the $CO_2/N_2$ separation were investigated. A NaY zeolite membrane with good $CO_2/N_2$ separation was successfully synthesized by using the hydrothermal solution ($Al_2O_3:SiO_2:Na_2O:H_2O$ = 1:6:14:840 in a molar base): at a permeation temperature of $30^{\circ}C$, its $CO_2$ permeance and $CO_2/N_2$ separation factor were $2.5{\times}10^{-7}mol/m^2secPa$ and 34, respectively. The $CO_2$ and $N_2$ permeations were highly dependent on permeation test conditions (feed composition, feeding rate, feed pressure, He sweeping rate and permeation temperature). The results indicated that (i) $CO_2$ and $N_2$ permeations through NaY zeolite membrane are governed by surface and micropore diffusions, respectively, (ii) the preparation of NaY zeolite membrane with a large permeating area is one of the most difficult hurdles for its real applications, and (iii) the retardation of $N_2$ permeation is an effective key to improve $CO_2/N_2$ separation factor in NaY zeolite membrane.

Keywords

References

  1. R. M. de Vos and H. Verweji, Improved performance of silica membranes for gas separation, J. Membr. Sci., 143, 37 (1998) https://doi.org/10.1016/S0376-7388(97)00334-7
  2. R. M. de Vos, W. F. Maier, and H. Verweji, Hydrophobic silica membranes for gas separation, J. Membr. Sci., 158, 277 (1999) https://doi.org/10.1016/S0376-7388(99)00035-6
  3. T. A. Centeno and A. B. Fuertes, Supported carbon molecular sieve membranes based on a phenolic resin, J. Membr. Sci., 160, 201 (1999) https://doi.org/10.1016/S0376-7388(99)00083-6
  4. T. A. Centeno and A. B. Fuertes, Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes, Sep. Purif. Technol., 25, 379 (2001) https://doi.org/10.1016/S1383-5866(01)00065-X
  5. H. B. Park and Y. M. Lee, Pyrolytic carbon-silica membrane: a promising membrane materials for improved gas separation J. Membr. Sci., 213, 263 (2003) https://doi.org/10.1016/S0376-7388(02)00533-1
  6. H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, and Y. M. Lee, Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membrane, J. Membr. Sci., 229, 117 (2004) https://doi.org/10.1016/j.memsci.2003.10.023
  7. K. Kusakabe, T. Kuroda, A. Murate, and S. Morooka, Formation of a Y-type zeolite membranes on a porous $\alpha$-alumina tube for gas separation, Ind. Eng. Chem. Res., 36(3), 649 (1997) https://doi.org/10.1021/ie960519x
  8. K. Kusakabe, T. Kuroda, and S. Morrooka, Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes, J. Membr. Sci., 148, 13 (1998) https://doi.org/10.1016/S0376-7388(98)00164-1
  9. Y. Hasegawa, K. Kusakabe, and S. Morooka, Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube, Chem. Eng. Sci., 56, 4273 (2001) https://doi.org/10.1016/S0009-2509(01)00106-3
  10. K. Kusakabe, T. Kuroda, K. Uchino, Y. Hasegawa, and S. Morooka, Gas permeation properties of ion-exchanged faujasite-type zeplite membranes, AIChE J., 45(6), 1220 (1999) https://doi.org/10.1002/aic.690450608
  11. H. Kita, T. Inoue, H. Asamura, K. Tanaka, and K. Okamoto, NaY zeolite membrane for the pervaporation separation of methanol-methyl tert-butyl ether mixtures, Chem. Commun. 45 (1997)
  12. H. Kita, K. Fuchida, T. Horita, H. Asamura, and K. Okamoto, Preparation of faujasite membranes and their permeation properties, Sep. Purif. Technol., 25, 261 (2001) https://doi.org/10.1016/S1383-5866(01)00110-1
  13. M. Lassinantti, J. Hedlund, and J. Sterte, Faujasitetype films synthesizing by seeding, Micropor. Mesopor. Mater., 38, 25 (2000) https://doi.org/10.1016/S1387-1811(99)00296-6
  14. K. Weh, M. Moack, I. Sieber, and J. Caro, Permeation of single gaes and gas mixtures through faujasite-type molecular sieve membranes, Micropor. Mesopor. Mater., 54, 27 (2002) https://doi.org/10.1016/S1387-1811(02)00381-5
  15. S. V. Sotrichos and V. N. Burganos, MRS Bulletin 24(3), 41 (1999)