DOI QR코드

DOI QR Code

Kinetic Properties of Extracted Lactate Dehydrogenase and Creatine Kinase from Mouse Embryonic Stem Cell- and Neonatal-derived Cardiomyocytes

  • Received : 2006.01.18
  • Accepted : 2006.04.14
  • Published : 2006.07.31

Abstract

Embryonic stem cells (ESCs), representing a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics, are capable of spontaneous differentiation into cardiomyocytes. The present study sought to define the kinetic characterization of lactate dehydrogenase (LDH) and creatine kinase (CK) of ESC- and neonatal-derived cardiomyocytes. Spontaneously differentiated cardiomyocytes from embryoid bodies (EBs) derived from mouse ESC line (Royan B1) and neonatal cardiomyocytes were dispersed in a buffer solution. Enzymes were extracted by sonication and centrifugation for kinetic evaluation of LDH and CK with spectrophotometric methods. While a comparison between the kinetic properties of the LDH and CK of both groups revealed not only different Michaelis constants and optimum temperatures for LDH but also different Michaelis constants and optimum pH for CK, the pH profile of LDH and optimum temperature of CK were similar. In defining some kinetic properties of cardiac metabolic enzymes of ESC-derived cardiomyocytes, our results are expected to further facilitate the use of ESCs as an experimental model.

Keywords

References

  1. Baharvand, H., Azarnia, M., Parivar, K. and Ashtiani, S. K. (2005) The effect of extracellular matrix on embryonic stem cell-derived cardiomyocytes. J. Mol. Cell. Cardio. 38, 495-503 https://doi.org/10.1016/j.yjmcc.2004.12.011
  2. Baharvand, H. and Matthaei, K. (2004) Culture condition difference for establishment of new embryonic stem cell lines from the C57BL/6 and BALB/C mouse strains. In vitro cell. Dev. Biol.-Animal. 40, 76-81 https://doi.org/10.1290/1543-706X(2004)040<0076:CCDFEO>2.0.CO;2
  3. Bass, A., Stejskalova, M., Stieglerova, A., Ostadal, B. and Samanek, M. (2001) Ontogenetic development of energysupplying enzymes in rat and guinea-pig heart. Physiol Res. 50, 237-245
  4. Chlopcikova, S., Psotova, J. and Miketova, P. (2001) Neonatal, rat cardiomyocytes-A model for the study of morphological, biochemical and electrophysiological characteristic of the heart. Biomed. Papers. 145, 49-55 https://doi.org/10.5507/bp.2001.011
  5. Dawson, D. M., Eppenberger, H. M. and Kaplan, N. O. (1967) The coparative enzymology of creatin kinase . II. Physical and chemical properties. J. Biol. Chem. 242, 210-217
  6. Decking, U. M., Alves, C., Wallimann, T., Wyss, M. and Schrader, J. (2001) Functional aspects of creatine kinase isoenzymes in endothelial cells . Am. J. Physiol. Cell. Physiol. 281, 320-328 https://doi.org/10.1152/ajpcell.2001.281.1.C320
  7. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature. 292, 154-156. https://doi.org/10.1038/292154a0
  8. Fijnvandraat, A. C., van Ginneken, A. C., de Boer, P. A., Ruijter, J. M., Christoffels, V. M., Moorman, A. F. and Lekanne Deprez, R. H. (2003) Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc Res. 58, 399-409 https://doi.org/10.1016/S0008-6363(03)00282-7
  9. Granstrom, G. and Magnusson, B. C. (1986) Lactate dehydrogenase isoenzyme changes during facial development. J. Anat. 148, 183-192
  10. Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M. and Addicks, K. (1997) Embryonic stem cell:a model to study structural and functional properties in cadiomyogenesis. Cardiovasc Res. 36, 149-162 https://doi.org/10.1016/S0008-6363(97)00193-4
  11. Kenneth, R., Czyz, J., Tweedle, D. and Tian Yang, H. (2002) Differentiation of pluripotent embryonic stem cell into cardiomyocytes. Circ. Res. 91, 189-201 https://doi.org/10.1161/01.RES.0000027865.61704.32
  12. Labosky, P. A., Barlow, D. P. and Hogan, B. L. (1994) Mouse embryonic germ (EG) cell lines: transmission through the germ line and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development. 120, 3197-3204
  13. Li, S.S. (1998) Structure, regulation and evolution of vertebrate lactate dehydrogenase genes. Zoological Studies. 37, 1-6
  14. Lopaschuk, G. D., Collins-Nakai, R. I. and Itoi, T. (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res. 26, 1172-1180 https://doi.org/10.1093/cvr/26.12.1172
  15. Maltsev, V. A., Rohewedel. J., Hescheler, J. and Wobous, A. M. (1993) Embryonic stem cell differentiate in vitro into cardiomyocytes representing sinusnodal , artial and ventricular cell types. Mech. Dev. 44, 41-50 https://doi.org/10.1016/0925-4773(93)90015-P
  16. Maltsev, V. A., Wobus, A. M., Rohwedel, J., Bader, M. and Hescheler, J. (1994) Cardiomyocytes differentiated in vitro from embryonic stem cell developmentally express cardicspesific genes and ionic currents. Circ Res. 75, 233-244 https://doi.org/10.1161/01.RES.75.2.233
  17. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cell. Proc. Natl. Acad. Sci. USA 78, 7634-7638 https://doi.org/10.1073/pnas.78.12.7634
  18. Saks, V. A., Kupriyanov, V. V. and Elizarova, G. V. (1980) Studies of energy transport in heart cells. J. Biol. Chem. 255, 755-763
  19. Saupe, K. W., Spindler, M., Hopkins, J. C., Shen, W. and Ingwall, J. S. (2000) Kinetic, thermodynamic, and developmental consequences of deleting creatine kinase isoenzymes from the heart. Reaction kinetics of the creatine kinase isoenzymes in the intact heart. J. Biol. Chem. 275, 19742-19746 https://doi.org/10.1074/jbc.M001932200
  20. Singh, S. N. and Kanungo, M. S. (1968) Alterations in lactate dehydrogenase of the brain, heart, skeletal muscle, and liver of rats of various ages. J. Biol. Chem. 243, 4526-4529
  21. Smith, A. G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol. 17, 435-462 https://doi.org/10.1146/annurev.cellbio.17.1.435
  22. Szasz, G., Gruber, W. and Bernt, E. (1976) Creatine kinase in serum:1.Determination of optimum reaction condition . Clin. Chem. 22, 650-656
  23. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  24. Van Der Laarse, A., Hollar, L., Kokshoon, L. J. and Witteveen, S. (1979) The activity of cardio-specific isoenzymes of creatine phosphokinase and lactate dehydrogenase in monolayer cultures of neonatal rat heart . J. Mol. Cel. Cardio. 11, 501-510 https://doi.org/10.1016/0022-2828(79)90473-5
  25. Winer, A. D. and Schwert, G. W. (1958) Lactic dehydrogenase. IV. The influence of pH on the kinetics of the reaction. J. Biol. Chem. 231, 1065-1083
  26. Yoshikuni, K., Matsuda, T., Xia, W. L., Inagaki, M., Nishimura, M. and Tanishima, K. (2001) Cold lability of lactate dehydrogenase isoenzymes and the effective preparation of reference material for clinical laboratory use. Biotechnol. Appl. Biochem. 34, 167-171 https://doi.org/10.1042/BA20010002

Cited by

  1. Enzymatic properties of the N- and C-terminal halves of human hexokinase II vol.42, pp.6, 2009, https://doi.org/10.5483/BMBRep.2009.42.6.350
  2. Conserved and unique thermodynamic properties of lactate dehydrogenases in an ectothermic organism, the teleostMicrostomus achne, and an endothermic organism, bovine vol.160, pp.5, 2016, https://doi.org/10.1093/jb/mvw039
  3. Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes vol.349, pp.3, 2006, https://doi.org/10.1016/j.bbrc.2006.08.151
  4. Stability of stationary states with variable concentration of hydrogen ions in enzyme systems: Applications to treatment of diabetic ketoacidosis vol.449, pp.1, 2013, https://doi.org/10.1134/S1607672913020117
  5. Neuregulin-1 promotes cardiomyocyte differentiation of genetically engineered embryonic stem cell clones vol.41, pp.10, 2008, https://doi.org/10.5483/BMBRep.2008.41.10.699