DOI QR코드

DOI QR Code

Hydraulic Design Optimization and Performance Analysis of a Centrifugal Blood Pump

원심형 혈액펌프의 최적화 수력설계 및 성능해석

  • 박무룡 (한국기계연구원 에너지기계연구센터) ;
  • 유성연 (충남대학교 기계설계공학과) ;
  • 오형우 (충남대학교 기계공학과) ;
  • 윤의수 (한국기계연구원 에너지기계연구센터)
  • Published : 2006.01.01

Abstract

This paper presents the hydrodynamic design and performance analysis method for a miniaturized centrifugal blood pump using three-dimensional computational fluid dynamics (CFD) code. In order to obtain the hydraulically high efficient configuration of a miniaturized centrifugal blood pump for cardiopulmonary circulation, a well-established commercial CFD code was incorporated considering detailed flow dynamic phenomena in the blood pump system. A prototype of centrifugal blood pump developed by the present design and analysis method has been tested in the mock circulatory system. Predicted results by the CFD code agree very well with in vitro hydraulic performance data for a centrifugal blood pump over the entire operating conditions. Preliminary in vivo animal testing has also been conducted to demonstrate the hemodynamic feasibility for use of centrifugal blood pump as a mechanical circulatory support. A miniaturized centrifugal blood pump developed by the hydraulic design optimization and performance prediction method presented herein shows the possibility of a good candidate for intra and extracorporeal cardiopulmonary circulation pump in the near future.

Keywords

References

  1. Loree II, H. M., Bourque, K., Gernes, D. B., Richardson, J. S., Poirier, V. L., Barletta, N., Fleischli, A., Foiera, G., Gempp, T. M., Schoeb, R., Litwak, K. N., Akimoto, T., Kameneva, M., Watach, M. J. and Litwak, P., 2001, 'The HeartMate III: Design and in vivo Studies of a Maglev Centrifugal Left Ventricular Assist Device,' Artificial Organs, Vol. 25, No.5, pp. 386-391 https://doi.org/10.1046/j.1525-1594.2001.025005386.x
  2. Noon, G. P., Morley, D. L., Irwin, S., Abdelsayed, S. V., Benkowski, R. J. and Lynch, B. E., 2001, 'Clinical Experience with the MicroMed DeBakey Ventricular Assist Device,' Ann. Thorac. Surg, Vol. 71, pp. 133-138 https://doi.org/10.1016/S0003-4975(00)02634-5
  3. Radovancevic, B., Gregoric, I.D., Tamez, D., Vrtovec, B., Tuzun, E., Chee, H.K., Moore, S., Jarvik, R.K. and Frazier, O.H., 2003, 'Biventricular Support with the Jarvik 2000 Axial Flow Pump: a Feasibility Study,' American Society for Artificial Internal Organs Journal, September-October, Vol. 49, No.5, pp. 604-607 https://doi.org/10.1097/01.MAT.0000084109.47034.8A
  4. Stepanoff, A. J., 1993, Centrifugal and Axial Flow Pumps, Krieger Publishing Company, Florida
  5. Oh, H. W. and Chung, M. K., 1999, 'Optimum Values of Design Variables Versus Specific Speed for Centrifugal Pumps,' Proc. Instn Mech. Engrs, Part A, Journal of Power and Energy, Vol. 213(A3), pp. 219-226 https://doi.org/10.1243/0957650991537563
  6. Oh, H. W., Yoon, E. S., Kim, K. S. and Ahn, J. W., 2003, 'A Practical Approach to the Hydraulic Design and Performance Analysis of a Mixed-Flow Pump for Marine Waterjet Propulsion,' Proc. Instn Mech. Engrs, Part A, Journal of Power and Energy, Vol. 217(A6), pp. 659-664 https://doi.org/10.1177/095765090321700610
  7. ANSYS ICEM CFD 10.0, 2005 (ANSYS, Inc.)
  8. ANSYS CFX 10.0, 2005 (ANSYS, Inc.)
  9. Balje, O. E., 1981, Turbomachines : A guide to design, selection, and theory, John Wiley & Sons, New York, pp. 56-59
  10. Tuzson, J., 2000, Centrifugal Pump Design, John Wiley & Sons, Inc., p. 135
  11. Lazarkiewicz, S. and Troskolanski, A. T., 1965, Impeller Pumps, Pergamon Press, p. 129
  12. Xinwei Song, Amy L. Throckmorton, Houston G. Wood, James F. Antaki and Don B. Olsen, 'Computational Fluid Dynamics Prediction of Blood Damage in a Centrifugal Pump,' Artificial Organs, Vol. 27(10), pp. 938-941 https://doi.org/10.1046/j.1525-1594.2003.00026.x
  13. Chan, W. K., Wong, Y. W., Ding, Y., Chua, L. P. and YU, S. C. M., 'Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump,' Artificial Organs, Vol. 26(9), pp. 785-793 https://doi.org/10.1046/j.1525-1594.2002.06954.x
  14. Kenji Araki, Hirofumi Anai, Mitsuo Oshikawa, Kunihide Nakamura and Toshio Onisuka, 'In Vitro Performance of a Centrifugal, a Mixed Flow and an Axial Flow Blood Pump,' Artificial Organs, Vol. 22(5), pp. 366-370 https://doi.org/10.1046/j.1525-1594.1998.06142.x
  15. Dong-Wook Kim and Yoshinori Mitamura, 1998, 'A Study of in-vitro Performances of the Intracardiac Axial Flow Pump,' J. of KOSOMBE, Vol. 19, No.1, pp. 33-38
  16. Kim, D. W. and Yim, S. P., 2004, 'A Study on Shape Optimization and Hemolysis Evaluation of Axial Flow Blood Pump by Using Computational Fluid Dynamics Analysis,' J. of KOSOMBE, Vol. 25, No.1, pp. 57-64
  17. Dong-Wook Kim and Yoshinori Mitamura, 2002, 'Characteristics of the Sealing Pressure of a Magnetic Fluid Shaft Seal for Intra-cardiac Axial Flow Blood Pumps,' J. of KIEE(D), Vol. 51, No. 10, pp. 477-482
  18. Dong-Wook Kim and Yoshinori Mitamura, 2000, 'A Study on Hemolysis Characteristics of Intra-cardiac Axial Flow Blood Pump,' J. of KOSOMBE, Vol. 21, No.4, pp. 353-362