Effect of Influent C/N Ratio and DO on Denitrification of Nitrate Polluted Groundwater in a Biofilter Process

Biofilter 공정에서 유입 C/N비와 DO가 지하수의 질산성 질소제거에 미치는 영향

  • Lee, Moo-Jae (Department of Industrial Chemistry Engineering, Chungbuk National University) ;
  • Park, Sang-Min (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Noh-Back (Department of Environmental Engineering, Chungbuk National University) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Kong-Soo (Department of Industrial Chemistry Engineering, Chungbuk National University)
  • Published : 2006.04.30

Abstract

In this study, effects of influent C/N(COD/Nitrate) ratio and dissolved oxygen(DO) concentration on biological nitrate removal from groundwater were investigated in the fixed-type biofilter. Influent nitrate of 30 mg/L was removed completely by biological denitrification at the C/N ratio of 10 and 4.0, while residual nitrate of 5 mg/L occurred at the C/N ratio of 2.0, which resulted from deficiency of organic electron donor. Furthermore, nitrite was accumulated up to about 5 mg/L as the C/N ratio decreased to 2.0. Increase in DO concentration also inhibited denitrification activity at the relatively high C/N ratio of 5.0, which decreased the nitrate removal efficiency. Although the influent DO concentration was reduced as low as 0.3 mg/L using sodium sulfite($Na_2SO_3$), effluent nitrite was up to 3.6 mg/L. On the other hand, nitrate was completely removed without detection of nitrite at the DO concentration of 0.3 mg/L using nitrogen gas($N_2$) sparging. The organic matter for denitrification in biofilter were in the range from 3.0 to $3.5gSCOD/g{NO_3}^--N$, while utilized these values increased at the high DO concentration of 5.5 mg/L. In addition to the high DO concentration and the low influent C/N ratio, DO control by chemical such as sodium sulfite affected on biological denitrification, which resulted in the reduction of nitrate removal efficiency and nitrite build-up in a biofilter.

고정상 생물여과지(biofiiter)에서 유입 C/N(COD/Nitrate)비와 용존산소(DO) 농도가 지하수로부터 질산성 질소를 제거하는데 미치는 영향을 관찰하였다. 유입 C/N비 10과 4.0에서 30 mg/L로 유입된 질산성 질소는 생물학적 탈질반응에 의해 완전히 제거되었다. 반면, 유입 C/N비 2.0에서는 전자공여체가 부족하였기 때문에 5.0 mg/L의 질산성 질소가 유출되었다. 게다가, 유입 C/N비가 2로 감소함에 따라 5.0 mg/L에 달하는 아질산성 질소가 발생하였다. 유입 C/N비 5에서 DO 농도의 증가는 탈질반응을 저해하였으며, 질산성 질소제거효율을 감소시켰다. 아황산나트륨($Na_2SO_3$)을 이용하여 유입 DO농도를 조절할 경우, 0.3 mg/L의 낮은 DO에도 불구하고 유출수 중 3.6 mg/L의 아질산성 질소가 잔류하였다. 반면, 질소가스를 이용하여 DO농도를 0.3 mg/L로 조절한 경우, 유입된 질산성 질소는 완전히 제거되었으며, 아질산성 질소는 검출되지 않았다. 생물여과지에서 유입된 질산성 질소를 제거하는데 소비된 유기물은 $3.0{\sim}3.5gSCOD/g{NO_3}^--N$의 범위이었으나, DO 농도가 5.5 mg/L로 증가함에 따라 소비된 그 양은 증가하였다. 높은 DO 농도 및 낮은 유입 C/N비와 함께 아황산나트륨을 이용한 DO 농도 조절은 생물학적 탈질반응에 영향을 주었으며, 질산성 질소제거효율을 감소시키고 아질산성 질소가 축적되었다.

Keywords

References

  1. 환경부, '간이상수도 수질검사결과,' 환경부 보도자료(2004)
  2. Lazarova, V. Z., Capdeville, B., and Nikolov, L., 'Influence of seeding conditions on nitrite accumulation in a denitrifying fluidized bed reactor,' Water Res., 28(5), 1189 - 1197(1994) https://doi.org/10.1016/0043-1354(94)90207-0
  3. Gomez, M. A., Hontoria, E., and Bonzalez-Lopez, J., 'Effect of dissolved oxygen concentration on nitrate removal from grounwater using a denitrifying submerged filter,' J. of Hazardous Materials, B90, 267 -278(2002)
  4. Rahmani, H., Rols, J. L., Capdeville, B., Cornier, J. C., and Deguin, A., 'Nitrite removal by a fixed culture in a submerged granular biofilter,' Water Res., 29(7), 1745 - 1753(1995) https://doi.org/10.1016/0043-1354(94)00324-Z
  5. Jansen, J. C., Jepsen, S. E., and Laursen, K. D., 'Carbon utilization in denitrifying biofilters,' Water Sci. Technol., 29(10-11), 101-109(1994)
  6. Thomas, K. L., Lloyd, D. and Boddy, L., 'Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species,' FEMS Microbiology Letters, 118(1-2), 181-186(1994) https://doi.org/10.1111/j.1574-6968.1994.tb06795.x
  7. Coyne, M., S. and Tiedje, J., M., 'Induction of denitrifying enzymes in oxygen-limited Achromobacter cycloclastes continuous culture,' FEMS Microbiology Letters, 73(3), 263 -270(1990) https://doi.org/10.1111/j.1574-6968.1990.tb03949.x
  8. Gomez, M. A., Bonzalez-Lopez, J., and Hontoria-Garcia, E., 'Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter,' J. of Hazardous Materials, B80, 69-80(2000)
  9. Mateju, V., Cizinska, S., Krejci, J., and Janoch, T., 'Biological water denitrification-A review,' Enz. Microb. Tech., 14(3), 170 -183(1992) https://doi.org/10.1016/0141-0229(92)90062-S
  10. APHA, 'Standard Methods for the examination of water and wastewater,' 19th ed. Wahington D. C.(1995)
  11. Tal, Y., Watts, J. E. M., Schreier, S. B., Sowers, K. R., and Schreier, H. J., 'Characterization of the microbial community and nitrogen trasformation processes associated with moving bed bioreactors in a closed recirculated maricultrue system,' Aquaculture, 215(1-4), 187-202(2003) https://doi.org/10.1016/S0044-8486(01)00876-6