Speciation of THMs, HAAs

THMs, HAAs의 종분포

  • Kim, Jin-Keun (Water Resources Academy, Korera Water Resources Corporation)
  • 김진근 (한국수자원공사 수자원교육원)
  • Published : 2006.11.30

Abstract

Concentration and speciation of trihalomethanes(THMs) and haloacetic acids(HAAs) that can be created during chlorine disinfection as disinfection by-products(DBPs) in Korean water treatment plants(WTPs) were investigated. 4 WTPs that adopted conventional water treatment processes were chosen for investigation and each represented a typical WTP on the Han, Keum, Sumjin and Nakdong Rivers. The average concentration of THMs was 26.9 ppb, and the maximum and minimum concentrations were 47.6 ppb and 11.0 ppb respectively, while the average concentration of HAAs was 25.4 ppb, and the maximum and minimum concentrations were 57.1 ppb and 9.7 ppb respectively. DBPs concentration was lower in the winter than the summer. The major species of THMs was chloroform and its average percentage was 77%, and the second highest was bromodichloromethane(20%), while the concentration of bromoform was below detection limits. The sum of dichloroacetic acid(DCAA) and trichloroacetic acid(TCAA) was 97% of $HAA_5 $ on average base. But its percentage was 90% in the Han River WTP, especially it was the lowest during the winter. On the other hand, the concentration of DCAA was higher than TCAA except during the summer.

국내 정수장에서 염소소독시 발생하는 소독부산물인 트리할로메탄(THMs), 할로아세틱에시드(HAAs)의 발생농도와 각각의 종별 분포현황을 조사하였다. 조사대상은 일반적인 정수처리공정으로 구성된 한강, 금강, 섬진강, 낙동강 수계의 1개 정수장씩 총 4개소였다. THMs의 발생농도는 평균 26.9 ppb, 최대 46.7 ppb, 최소 11.0 ppb였으며, $HAA_5$의 발생농도는 평균 25.4 ppb, 최대 57.1 ppb, 최소 9.7 ppb였다. 계절적으로는 동절기에 농도가 낮았고 하절기에 높았다. THMs의 종별 분포를 조사한 결과 클로로포름의 비율이 평균 77%로 가장 높았고 다음으로는 브로모디클로로메탄(20%)이 높게 검출되었으며, 브로모포름의 농도는 정량한계 미만이었다. $HAA_5$의 경우 디클로로아세틱에시드(DCAA)와 트리클로로아세틱에시드(TCAA)의 합이 $HAA_5$의 97%를 차지하는 것으로 조사되었다. 그러나 한강수계의 경우는 이 비율이 평균 90%로 다소 낮았으며, 특히 겨울철에 비율이 가장 낮았다. 한편, 하절기를 제외하고는 DCAA가 TCAA보다 높은 것으로 조사되었다.

Keywords

References

  1. 김진근, 정상기, 신창수, 조혁진, '국내 정수장의 소독부산물 생성 특성,' 상하수도학회지, 19(3), 301-311(2005)
  2. Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K M., and Aieta, E. M., 'The Occurrence of Disinfection By-products in US Drinking Water,' J. AWWA, 81(8), 41-53(1989) https://doi.org/10.1002/j.1551-8833.1989.tb03258.x
  3. Singer, P. C., Control of Disinfection By-Products in Drinking Water, J. Environmental Engineering, 120(4), 727 -744(1994) https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(727)
  4. Singer, P. and Reckhow, D., Chemical Oxidation in Water Quality and Treatment, Letterman, R.D.(Ed.), AWWA, Denver, pp. 12.29-12.46(1999)
  5. Kawamura, S., Integrated Design and Operation of Water Treatment Facilities, 2nd ed. John Wiley & Sons, Inc. New York, pp. 543-552(2000)
  6. Symons, J. M., Krasner, S. W., Simms, L. A., and Sclimenti, M., 'Measurement of THM and Precursor Concentrations Revisited: The Effect of Bromide Ion,' J. AWWA, 85(1), 51-62(1993) https://doi.org/10.1002/j.1551-8833.1993.tb05921.x
  7. 환경부, http://www.me.go.kr/March(2006)
  8. WHO(한무영역), Guidelines for Drinking Water Quality, 2nd ed., pp. 111-125(1993)
  9. USEPA, http://www.epa.gov/safewater/mcl.htm March(2006)
  10. 日本水道協會, 水道法關係法令集, pp. 125 - 126(2004)
  11. 현길수, 김영진, 최윤영, '정수중의 THM과 HAA의 거동,' 수처리기술, 13(1), 55 - 60(2005)
  12. Nikolaou, A. D., Lekkas, T. D., and Golfinopoulos, S. K, 'Kinetics of the formation and decomposition of chlorination by-products in surface waters,' Chemical Engineering J., 100, 139-148(2004) https://doi.org/10.1016/j.cej.2004.01.033
  13. Symons, J. M., Bellar, T. A., Carswell, J. K, DeMarco, J., Kropp, K. L., Robeck, G. G., Seeger, D. R., Slocum, D. J., Smith B. L., and Stevens, A. A., 'National Organics Reconnaissance Survey for Halogenated Organics,' J. AWWA, 76(11), 634-6470(1975)
  14. Chang, E. E., Lin, Y. P., and Chiang, P. C., 'Effects of bromide on the formation of THMs and HAAs,' Chemosphere, 43, 1029-1034(2001) https://doi.org/10.1016/S0045-6535(00)00210-1
  15. Amy, G. L., Tan, L., and Davis, M. K, 'The Effects of Ozonization and Activated Carbon Adsorption on Trihalomethane Speciation,' Water Res., 25(2), 191-202(1991) https://doi.org/10.1016/0043-1354(91)90029-P
  16. Owen, D. M., Chowdhury, Z. K., Summers, R. S., Hooper, S. M., Solarik, G., and Gray, K, Removal of DBP Precursors by GAC Adsorption, AWWARF, Denver, pp. 167-180
  17. Snoeyink, V. L. and Summers, R. S., Adsorption of Organic Compounds in Water Quality and Treatment, Letterman, R.D.(Ed.), AWWA, Denver, pp. 13.41-13.47(1999)
  18. Clark, R. and Boutin, B., Controlling Disinfection By-Products and Microbial Contaminants in Drinking Water, USEPA, Ohio, pp. 1-1 - 3-26(2001)