Electrochemical Disinfection for Ballast Water Treatment

발라스트수 처리를 위한 전기화학적 살균처리

  • Seo, Won-Hak (Hazardous Substances Research Center, Korea Institute of Science and Technology) ;
  • Jeon, Sun-Ae (Department of Chemical Engineering, Dongguk University) ;
  • Kim, Ji-Hyun (Department of Chemical Engineering, Dongguk University) ;
  • Lee, Tae-Ho (Biosaint Co., Ltd.) ;
  • Sang, Byoung-In (Hazardous Substances Research Center, Korea Institute of Science and Technology)
  • 서원학 (한국과학기술연구원 유해물질연구센터) ;
  • 전선애 (동국대학교 화학공학과) ;
  • 김지현 (동국대학교 화학공학과) ;
  • 이태호 (바이오세인트(주)) ;
  • 상병인 (한국과학기술연구원 유해물질연구센터)
  • Published : 2006.11.30

Abstract

The discharge of ballast water from the marine vessel without proper treatment causes the ecological disruption. Therefore, International Marine Organization(IMO) has the plan to force the proper treatment of ballast water before its discharge to open sea. To satisfy the IMO's criteria, several processes such as filtration, UV irradiation, and ozonation etc., were introduced. Since the disinfection of ballast water should be conducted within very short hydrolic retention time, electrochemical treatment can be a promissing process. The DSA(dimensional stable anode) electrode for the electrochemical treatment was prepared by thermal deposition method. The disinfection rate of microorganisms increased with the increasing current density and reaction time under low pH condition. The morphology of sterilized microorganisms was shown by SEM and Microscopy.

대형선박에서 적절한 처리없이 배출되는 발라스트수에 의한 해양 생태계의 파괴가 최근 전세계적으로 환경오염 문제로 대두되고 있다. 그 결과, 국제해사기구(IMO)는 공해로 배출되기 전 발라스트수의 적절한 처리를 강제하는 국제협약을 시행할 예정이다. IMO의 발라스트수 처리 기준을 준수하기 위해, 여과, UV 자외선, 오존 처리 등과 같은 몇몇 공정들이 연구되고 있다. 발라스트수의 살균은 매우 짧은 수리학적 체류시간 내에 처리되어야 하기 때문에, 전기화학적 처리 공정은 우수한 공정이 된다. 불용성 전극을 이용한 전기화학적 처리 공정에서 미생물의 살균능은 낮은 pH조건하에 전류밀도와 체류시간이 증가함에 따라 증가하였다. 살균처리 후 미생물의 형상을 전자현미경과 광학현미경으로 관찰하여 전기화학적으로 미생물이 살균된 형태를 확인하였다.

Keywords

References

  1. Hayes, K. R., Sliwa, C., 'Identifying potential marine pests-a deductive approach applied to Australia,' Mar. Pollut. Bull., 46(1), 91-98(2003) https://doi.org/10.1016/S0025-326X(02)00321-1
  2. Ruiz, G. M., Rawlings, T. K., Dobbs, F. C., Drake, L. A., Mullady T., Huq, A., and Colwell, R. R., 'Global spread of microorganisms by ships,' Nature, 408, 49-50( 2000) https://doi.org/10.1038/35040695
  3. Hayes, K. R., 'Ecological risk assessment for ballast water introductions: A suggested approach,' ICES J. Marine Science, 55(2), 201 - 212(1998) https://doi.org/10.1006/jmsc.1997.0342
  4. Hallegraeff, G. M., 'Transport of toxic dinoflagellates via ship's ballast water: Bioeconomic risk assessment and effocacy of possible ballast water management strategies,' Mar. Ecol. Prog. Ser., 168, 297 - 309(1997) https://doi.org/10.3354/meps168297
  5. International Maritime Organization(IMO), www.imo.org (2004)
  6. Maclsaac, H. J., Robbins, T. C., Lewis, M. A., 'Modeling ship's ballast water as invasion threats to the great lakes,' Can. J. FISH Aquat. Sci., 59, 1245- 1256(2002) https://doi.org/10.1139/f02-090
  7. Parsons, M. G., Harkins, R. W., 'The great lakes ballast technology demonstration project mechanical testing program,' Mar. Technol. Soc. J., 37, 129-140(2000)
  8. Waite, T. D., et al., 'Removal of natural populations of marine plankton by a large-scale ballast water treatment system,' Mar. Ecol., 258, 51-63(2003) https://doi.org/10.3354/meps258051
  9. Laroussi, M., et aI., 'Decontamination of water by excimer UV radiation,' IEEE Trans. Plasma Sci., 30, 1501- 1504(2002) https://doi.org/10.1109/TPS.2002.804208
  10. Tamburri, M. N., Wasson, K., Matsuda, M., 'Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion,' Biol. Consev., 103(10), 331 - 341(2002) https://doi.org/10.1016/S0006-3207(01)00144-6
  11. Guohua, Chen, 'Elctrochmical technologies in wastewater treatment,' Sep. Purif Tehnol., 38, 11- 41(2004) https://doi.org/10.1016/j.seppur.2003.10.006
  12. 유재정, 민경석, 박정민, 황동진, '$Ti/IrO_2$ 전극에 의한 염색폐수 전기분해 처리공정,' 한국물환경학회지, 19(1), 1 - 8(2003)
  13. 정도원, 조한상, 박대원, 주재백, 손대원, '전기화학적 방법을 이용한 폐수내 유기물과 질소 처리,' 한국화학공학회지, 39(5), 661 - 665(2001)
  14. Park, D. W., Chung, D. W., and Ju, J. B., 'Design parameters for an electrochemical cell with porous electrode to treat metal-ion solution,' Water Res., 35(1), 57-68( 2001) https://doi.org/10.1016/S0043-1354(00)00253-0
  15. Markelova, A. G., Vladimirova, M. G., and Kuptsova, E. S., 'A comparison of cytochemical methods for the rapid evaluation of microalgal viability,' Russian J. of Plant Physiol., 47(6), 815 - 819(2000) https://doi.org/10.1023/A:1026619514661
  16. Thomas Hartmann, Patricia Paviet-Hartmann, Christopher Wetteland, Ningping Lu, 'Spectroscopic determination of hypochlorous acid, in chloride brine solutions, featuring 5 MeV proton beam line experiment,' Radiat, Phys. and Chem., 66(5), 335-341(2003) https://doi.org/10.1016/S0969-806X(02)00407-3
  17. V. L. Snoeyink and D. Jenkins., Water chemistry. New York.; John wiley R sons. In., 269 - 270(1980)
  18. Park, S. W., Kim S. K., and Lee K. W., '전기분해를 이용한 산업폐수처리에 관한 연구' 환경과학논문, 3(1), 131 - 142(1998)
  19. 윤용수, 하범용, 노방타잉후이, '전기분해에 의해 제조된 NaOCl을 이용한 염색폐수의 처리특성(I),' 한국섬유공학회지, 42(5), 316-322(2005)