Formation Characteristics of $BDOC_{rapid}$ and $BDOC_{slow}$ by Ozonation

오존처리에 의한 $BDOC_{rapid}$$BDOC_{slow}$ 생성 특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park) ;
  • Choi, Young-Ik (Department of Environmental Engineering, Silla University) ;
  • Bae, Sang-Dae (Department of Environmental Engineering, Silla University)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 정철우 (울산산업진흥TP 전략산업기획단) ;
  • 최영익 (신라대학교 환경공학과) ;
  • 배상대 (신라대학교 환경공학과)
  • Published : 2006.12.31

Abstract

The formation characteristics of $BDOC_{rapid}$ and $BDOC_{slow}$ with different ozone dosages for 3 different kinds of waters from Maeri raw water in the down stream of Nakdong river, Hoidong reservoir water in Busan City and treated Maeri raw water(sand filtered) has been investigated in this study. The ozone dosages for producing maximum $BDOC_{total}$ in the Maeri raw water, Hoidong reservoir water and sand filtered water of Maeri were 0.9, 1.1 and 1.4 $mgO_3$/mgDOC respectively. It could be concluded that the ozone dosages for formations of maximum $BDOC_{total}$ were determined by characteristics of water. The ozone dosages for producing maximum $BDOC_{rapid}$ in the Maeri raw water, Hoidong reservoir water and sand filtered water of Maeri were 0.9, 0.9 and 1.0 $mgO_3$/mgDOC respectively that were same or lower than the used ozone dosages for producing maximum $BDOC_{total}$. $BDOC_{slow}$ was being formated and increased continuously with the higher ozone dosages which were the used ozone dosages for maximum formation of $BDOC_{total}$ and $BDOC_{rapid}$. For the best results of a pre-treatment of biofiltration, the optimum ozone dosage ranges in formation of $BDOC_{rapid}/BDOC_{total}$ were $0.6{\sim}1.0\;mgO_3$/mgDOC that were lower than the ozone dosage ranges of $0.9{\sim}1.4\;mgO_3$/mgDOC for the maximum formation $BDOC_{total}$. The reported results indicated that the best and effective ways from economic and technical points of view to determine the optimum ozone dosages of the pretreatment of biofilteration process were investigating and classifying BDOC.

본 연구에서는 낙동강 하류 매리원수, 부산시 회동수원지 원수 및 매리원수를 정수처리하는 pilot-plant의 급속 모래여과 처리수를 이용하여 오존 투입농도별로 $BDOC_{rapid}$4와 $BDOC_{slow}$의 생성특성에 대하여 조사하였다. $BDOC_{total}$ 농도가 최대가 되는 오존 투입 농도는 매리원수, 회동원수 및 모래여과 처리수에서 각각 0.9, 1.1 및 1.4 $mgO_3/mgDOC$로 조사되어 실험에 사용된 시료수의 특성에 따라 $BDOC_{total}$이 최대로 생성되는 오존 투입농도는 다르게 나타났다. $BDOC_{rapid}$를 최대로 생성시키는 오존 투입농도는 $BDOC_{total}$을 최대로 생성시키는 오존 투입농도 보다 낮은 $0.9{\sim}1.1\;mgO_3$/mgDOC로 나타났으며, 1 $mgO_3$/mgDOC 이상의 오존 투입농도에서는 $BDOC_{rapid}$의 농도가 오하려 낮아지는 것으로 나타났다. 또한. 오존 처리에 따른 $BDOC_{slow}$의 생성특성 조사에서 $BDOC_{slow}$$BDOC_{total}$$BDOC_{rapid}$를 최대로 생성시키는 오존 투입농도 보다 더 높은 오존 투입농도에서도 지속적으로 생성되었다. Biofiltration 공정의 전처리로 사용되는 오존의 최적 투입량을 결정할 수 있는 $BDOC_{rapid}/BDOC_{total}$비를 실험에 사용된 시료수별로 조사한 결과 $0.6{\sim}1.0\;mgO_3$/mgDOC로 조사되어 $BDOC_{total}$이 최대로 생성되는 오존 투입농도 $0.9{\sim}1.4\;mgO_3$/mgDOC보다 낮은 것으로 나타났다. 따라서 최적의 오존 투입율 결정시 BDOC 분류를 통한 접근법이 경제성 측면이나 biofiltration 공정의 효율면에서도 훨씬 효율적인 것으로 조사되었다.

Keywords

References

  1. LeChevallier, M. W., Babcock, T. M., and Lee, R. G., 'Examination and characterization of distribution system biofilms,' Applied & Environmental Microbiology, 53(12), 2714(1987)
  2. LeChevallier, M. W., Cawthon, C. D., and Lee, R. G., 'Inactivation of biofilm bacteria,' Applied & Environmental Microbiology, 54, 2492(1988)
  3. Volk, C. J. and LeChevallier, M. W., 'Assessing biodegradable organic matter,' J. AWWA, 92(5), 64-76(2000)
  4. Trulleyova, S. and Rulik, M., 'Determination of biodegradable dissolved organic carbon in waters: comparison of batch methods,' Science of the Total Environment, 332, 253-260(2004) https://doi.org/10.1016/j.scitotenv.2004.04.018
  5. Van der Kooij, D., Visser, A., and Hijnen, W. A. M., 'Determining the concentration of easily assimilable organic carbon in drinking water,' J. AWWA, 74(10), 540-545(1982) https://doi.org/10.1002/j.1551-8833.1982.tb05000.x
  6. Servais, P., Billen, G., and Hascoet, M. C., 'Determination of the biodegradable fraction of dissolved organic matter in waters,' Water Res., 21(4), 445-450(1987) https://doi.org/10.1016/0043-1354(87)90192-8
  7. Bourbigot, M. M., Dodin, A., and Lheritier, R., 'La flore bacterienne dans un reseau de distribution,' Water Res., 18, 585-591(1984) https://doi.org/10.1016/0043-1354(84)90208-2
  8. Huck, P. M., 'Measurement of biodegradable organic matter and bacterial growth potential in drinking water,' J. AWWA, 82(7), 78-86(1990)
  9. Langlas, B., Reckhow, D. A., and Brink, D. R., 'Practical application of ozone,' In Ozone in Water Treatment: Applications and Engineering, Lewis Publisher, Chelsea, Mich.(1991)
  10. Huck, P. M., Zhang, S., and Price, M. L., 'BOM removal during biological treatment: a first-order model,' J. AWWA, 86(6), 61(1994)
  11. Hozalski, R. M., Goel, S., and Bouwer, E. J., 'TOC removal in biological filters,' J. AWWA, 87(12), 40(1995)
  12. Wang, J. Z., Summers, R. S., and Miltner, R. J., 'Biofiltration performance: part 1, relationship to biomass,' J. AWWA, 87(12), 55(1995)
  13. Carlson, K. H., and Amy, G. L., 'Ozone and biofiltration optimization for multiple objective', J. AWWA, 93(1), 88-98(2001)
  14. Carlson, K. H. and Amy, G. L., 'The relative importance of HLR and EBCT in biofiltration,' Proceeding of 1995 AWWA Water Quality Technology Conference, New Orleans(1995)
  15. Wang, J. Z. and Summers, R. S., 'Modeling of biofiltration of natural organic matter in drinking water treatment,' Proceeding of 1994 ASCE Environmental Engineering Conference, Boulder(1994)
  16. Carlson, K. H., Amy, G. L., Garside, J., and Blais, G., 'Ozone induced biodegradation and removal of NOM and ozonation by-products in biological filters,' In Alternative Biological Filtration, Collins M. R. and Graham N. J. D.(eds.), John Wiley & Sons, New York(1996)
  17. Allgeier, S. A., Simmers, R. S., and Jacangelo, J. G., 'Determination of the BDOC of natural and treated waters using a scaled batch reactor,' Proceeding of AWWA Water Quality Technology Conference, Boston(1996)
  18. Carlson, K. H. and Amy, G. L., 'The formation of filter removable biodegradable organic matter during ozonation,' Ozone Science & Engineering, 19(2), 179-199(1997) https://doi.org/10.1080/01919519708547314
  19. 손희종, 노재순, 강임석, '회분식 생물반응기를 이용한 $BDOC_{rapid}$$BDOC_{slow}$ 결정,' 한국물환경학회지, 20(4), 357-364(2004)
  20. Maclean, R. G., Prevost, M., Coallier, J., Duchesne, D., and Mailly, J., 'Thiosulfate interference in the biodegradable dissolved organic carbon assay,' Water Res., 30(8), 1858-1864(1996) https://doi.org/10.1016/0043-1354(96)00052-8
  21. Goel, S., Hozalski, R. M., and Bouwer, E. J., 'Biodegradation of NOM: effect of NOM source and ozone dose,' J. AWWA, 87(1), 90-105(1995)
  22. Siddiqui, M. S., Amy, G. L., and Murphy, B. D., 'Ozone enhanced removal of natural organic matter from drinking water sources,' Water Res., 31(12), 3098-3106(1997) https://doi.org/10.1016/S0043-1354(97)00130-9
  23. DiGiano, F. A., Singer, P. C., Parameswar, C., and Lecourt, T. D., 'Biodegradation Kinetics of ozonated NOM and aldehydes,' J. AWWA, 93(8), 92-104(2001)
  24. Fahmi, Nishijima, W., and Okada, M., 'Characterization of organic matter in ozonation and biological treatment,' Water Supply: Research & Technology-Aqua, 52(4), 291-297(2003)