Prevalence of Bacillus cereus Group in Rice and Distribution of Enterotoxin Genes

  • Jang, Ji-Hyun (Department of Food and Bioengineering, Kyungwon University) ;
  • Lee, No-A (Department of Food and Bioengineering, Kyungwon University) ;
  • Woo, Gun-Jo (Korea Food and Drug Administration) ;
  • Park, Jong-Hyun (Department of Food and Bioengineering, Kyungwon University)
  • Published : 2006.04.30

Abstract

Bacillus cereus group comprising B. cereus, B. thuringiensis, and B. mycoides was differentiated by polymerase chain reaction (PCR) and colony morphology. Prevalence of B. cereus group in rice and distribution of enterotoxin genes were determined as possible food poisoning agents. PCR using primers targeted for gyrB and cry genes could distinguish B. thuringiensis from B. cereus, and B. mycoides was differentiated by rhizoid morphological characteristics on nutrient agar. Among 136 rice and their processed products, prevalence of B. cereus group was 40%. B. cereus group consisted of 54 B. cereus, 11 B. thuringiensis, and 1 B. mycoides. Major isolates were B. cereus, with B. thuringiensis detected up to 10% among edible rice tested. Five enterotoxin genes, hbl, nhe, bceT, entFM, and cytK, were broadly distributed among B. cereus group, especially in B. cereus and B. thuringiensis. Prevalence of B. cereus group in rice and enterotoxin distribution suggest B. thuringiensis and B. cereus are toxigenic strain that should be controlled in rice and its products.

Keywords

References

  1. Grethe IB, Andersen S, Marianne S, Terje LT, Einar GT. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 69: 237-246 (2001) https://doi.org/10.1016/S0168-1605(01)00500-1
  2. Notermans S, Batt CA. A risk assessment approach for food borne Bacillus cereus and its toxins. J. Appl. Microbiol. Symp. Suppl. 84: 51S-61S (1998)
  3. Agata N, Masashi M, Ohta M, Suwan S, Ohtani I, Isobe M. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in Hep-2 cells. FEMS Microbiol. Lett. 121: 3134 (1994)
  4. Agata N, Ohta M, Arakawa Y, Mori M. The bceT gene of Bacillus cereus encodes an enterotoxin protein. Microbiology 141: 983-988 (1995) https://doi.org/10.1099/13500872-141-4-983
  5. Asano SI, Nukumizu Y, Bando H, Hzuka T, Yamamoto T. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 1054-1057 (1997)
  6. Lund T, De Buyser ML, Granum PE. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254261 (2000)
  7. Beecher DJ, Shoeni JL, Wong ACL. Enterotoxin activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428 (1995)
  8. Lund T, Granum PE. Characterisation of non-haemolytic enterotoxin complex from Baciilus cereus isolated after a foodbome outbreak. FEMS Microbial Lett. 141: 151-156 (1996) https://doi.org/10.1111/j.1574-6968.1996.tb08377.x
  9. Manuel P, Victor JP. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Review 26: 419-432 (2003) https://doi.org/10.1111/j.1574-6976.2003.tb00624.x
  10. Buyer JS. A soil and rhizosphere microorganism isolation and enumeration medium that inhibits Bacillus mycoides. Appl. Environ. Microbiol. 61: 1839-1842 (1995)
  11. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343-346 (1991) https://doi.org/10.1099/00207713-41-3-343
  12. Fletcher P, Logan E. Improved cytotoxicity assay for Bacillus cereus diarrhoeal enterotoxin. Lett. Appl. Microbiol. 28: 394-400 (1999) https://doi.org/10.1046/j.1365-2672.1999.00542.x
  13. Rivera AMG, Granum PE, Priest FG Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett. 190: lSI-ISS (2000)
  14. Hsieh YM, Sheu SJ, Chen YL, Tsen HY. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 87: 481-490 (1994) https://doi.org/10.1046/j.1365-2672.1999.00837.x
  15. Sarrias JA, Valero M. Salmeron MC. Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 19: 589-595 (2002) https://doi.org/10.1006/fmic.2002.0514
  16. Lee JR, Kim M, Urn S. PCR-based detection and identification of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum in kimchi. Food Sci. Biotechnol. 13: 754-757 (2004)
  17. Manzano M, Cocolin L, Cantonic C. Comi G Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Int. J. Food Microbiol. 81: 249-254 (2003) https://doi.org/10.1016/S0168-1605(02)00222-2
  18. Bourque SN, Valero JR, Mercier J, Lavoie MC, Levesque KJ. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringienesis. Appl. Environ. Microbiol. 59: 523-527 (1993)
  19. Mantynen V, Lindstrom KA. Rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 64: 16341639 (1998)
  20. Granum PE, O'Sullivanand K, Lund T. The sequence of the nonhemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225-229 (1999) https://doi.org/10.1111/j.1574-6968.1999.tb13736.x
  21. Henderson I, Yu D, Tumbull PC. Differentiation of Bacillus anthracis and other 'Bacillus cereus group' bacteria using IS231-derived sequences. FEMS Microbiol. Lett. 128: 113-118 (1995) https://doi.org/10.1111/j.1574-6968.1995.tb07509.x
  22. Keirn P, Kalif A, Schupp P, Hill JK, Travis SE, Richmond K, Adair DM, Hugh-Jones M, Kuske CR, Jackson P. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J. Bacteriol. 179: 818-824 (1997) https://doi.org/10.1128/jb.179.3.818-824.1997
  23. Harrell LJ, Andersen GL, Wilson KH. Genetic variability of Bacillus anthracis and related species. J. Clin. Microbiol. 33: 1847-1850 (1995)
  24. Cherif A, Brusetti L, Borin S, Rizzi A, Boudabous A, KhyamiHorani H. Genetic relationship in the Bacillus cereus group by repPCR fmgerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94: 1108-1119 (2003) https://doi.org/10.1046/j.1365-2672.2003.01945.x
  25. Wei QR, Liao MJ, Hung MJ, Wan TH. Microbiological quality of 18 degreeCready-to-eat food products sold in Taiwan. lnt. J. Food Microbiol. 80: 241-250 (2003) https://doi.org/10.1016/S0168-1605(02)00172-1
  26. Birgit MP, Richard D, Birgit D, Martlbauer E, Siegfried S. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 65: 5436-5442 (1999)
  27. Bjarne MR, Hendriksen NB. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis Strains by PCR Analysis. Appl. Environ. Microbiol. 67: 185-189 (2001) https://doi.org/10.1128/AEM.67.1.185-189.2001
  28. Shinagawa K, Sugiyama J, Terada T, Matsusaka N, Sugii S. Improved methods for purification of an enterotoxin produced by Bacillus cereus. FEMS Microbiol. Lett. 64: 1-5 (1991)