Characterization of Low Molecular Weight Polyphenols from Pine (Pinus radiata) Bark

  • Mun, Sung-Phil (Division of Forest Science, College of Agriculture and Life Sciences, Chonbuk National University) ;
  • Ku, Chang-Sub (Department of Advanced Organic Materials Engineering, Chonbuk National University)
  • Published : 2006.06.30

Abstract

Low molecular weight polyphenols were isolated from hot water extracts of radiata pine (Pinus radiata) bark using a Sephadex LH-20 column and characterized by $^1H$ and $^{13}C$ NMR, UV, FT-IR, and GC-MS analyses. Major compounds isolated and identified were protocatechuic acid, trans-taxifolin, and quercetin. Trans-taxifolin, an important intermediate in biosynthetic route of proanthocyanidin (PA), was isolated in large quantities and indicates that PA is a major component of radiata pine bark. Small amounts of polyphenols were identified by GC-MS analysis. The presence of p-hydroxybenzoic acid, vanillic acid, protocatechuic acid, cis- and trans-feruic acid, p-coumaric acid, trans-caffeic acid, (-)-epicatechin, (+)-catechin, trans- and cis-taxifolin, (+)-gallocatechin, and quercetin was confirmed by comparison of mass fragmentation patterns and retention times (RT) with authentic samples. In addition, the presence of astringenin, astringenin glycoside, trans- and cis-leucodelphinidin was strongly assumed from characteristic mass fragment ions due to their conjugated structure and retro Diels-Alder reaction, and also from biosynthetic route of PA. GC-MS analysis allowed us to detect small amounts of phenolic acids and flavonoids and eventually discriminate trans- and cis-configuration in the identified polyphenols.

Keywords

References

  1. Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a proanthocyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Bio. Med. 27: 704-724 (1999) https://doi.org/10.1016/S0891-5849(99)00090-8
  2. Kim YM, Wang MH, Rhee HI. A novel a-glucosidase inhibitor from pine bark. Carbohyd. Res. 339: 715-717 (2004) https://doi.org/10.1016/j.carres.2003.11.005
  3. Rauha JP, Remes S, Heinonen M, Hopia A, Kahkonen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56: 3-12 (2000) https://doi.org/10.1016/S0168-1605(00)00218-X
  4. Virgili F, Pagana G, Bourne L, Rimbach G, Natella F, Rice-Evans C, Packer L. Ferulic acid excretion as a marker of consumption of a French maritina pine (Pinus Maritima) bark extract. Free Radical Bio. Med. 28: 1249-1256 (2000) https://doi.org/10.1016/S0891-5849(00)00244-6
  5. Hassan EBM, Mun SP. Liquefaction of pine bark using phenol and lower alcohols with methanesultonic acid catalyst. J. Ind. Eng. Chem. 8: 359-364 (2002)
  6. Karonen M, Loponen J, Ossipov V, Pihlaja K. Analysis of procyanidins in pine bark with reversed-phase and normal-phase high-pertormance liquid chromatography-electro spray ionization mass spectrometry. Anal. Chim. Acta 522: 105-112 (2004) https://doi.org/10.1016/j.aca.2004.06.041
  7. Ku CS, Mun SP. Anti-oxidative potential of hot water extracts obtained from different species of pine bark (abstract no PP004). In: Abstracts: 54th Annual Meeting of the Japan Wood Research Society. August 3-5, Sapporo convention center, Sapporo, Japan. Japan Wood Research Society, Sapporo, Japan (2004)
  8. Ku CS, Mun SP. Identification and characterization of hot water extracts trom Pinus radiata bark and their potential bioactivity (abstract no P61530). In: Abstracts: 55th Annual Meeting of the Japan Wood Research Society. March 16-18, Kyoto University Yoshida-south Campus Clock Tower Centennial Hall, Kyoto, Japan. Japan Wood Research Society, Kyoto, Japan (2005)
  9. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem. Toxicol. 41: 1727-1738 (2003) https://doi.org/10.1016/S0278-6915(03)00200-X
  10. Zhang K, Zuo Y. GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice. J. Agric. Food Chem. 52: 222-227 (2004) https://doi.org/10.1021/jf035073r
  11. Franke R, Humphreys JM, Hemm MR, Denault JW, Ruegger MO, Cusumano JC, Chapple C. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism. Plant J. 30: 33-45 (2002) https://doi.org/10.1046/j.1365-313X.2002.01266.x
  12. Tokusoglu MK, Ytldtrum Z. HPLC-UV and GC-MS characterization of the flavonol aglycones quercetin, kaempferol, and myrcetin in tomato pastes and other tomato-based products. Acta Chromatogr. 13: 196-207 (2003)
  13. Stevens JF, Hart H, Elema ET, Bolck A. Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochemistry 41: 503-512 (1996) https://doi.org/10.1016/0031-9422(95)00573-0
  14. Watson DG, Pitt AR. Analysis of flavonoids in tablets and urine by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun. Mass Sp. 12: 153-156 (1998) https://doi.org/10.1002/(SICI)1097-0231(19980227)12:4<153::AID-RCM122>3.0.CO;2-4
  15. Peng X, Misawa N, Harayama S. Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl. Environ. Microbiol. 69: 1417-1427 (2003) https://doi.org/10.1128/AEM.69.3.1417-1427.2003
  16. Gonthier MP, Cheynier V, Donovan JL, Manach C, Morand G, Mila I, Lapierre C, Remesy C. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. Nutr. Metabol. 461-467 (2003)
  17. Kennedy JF, Methacanon P, Lloyd LL. The identification and quantitation of the hydroxycinnamic acid substituents of a polysaccharide extracted from maize bran. J. Sci. Food Agric. 79: 464-470 (1999) https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<464::AID-JSFA274>3.0.CO;2-E
  18. Martens DA. Division S-3 - Soil biology & biochemistry: identification of phenolic acid composition of alkali-extracted plants and soils. Soil Sci. Soc. Am. J. 66: 1240-1248 (2002) https://doi.org/10.2136/sssaj2002.1240
  19. Duenas M, Estrella I, Hernandez T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur. Food Res. Technol. 219: 116-123 (2004)
  20. Moran JF, Klucas RV, Grayer RJ, Abian J, Harborne JB, Becana M. Characterization of phenolic glucosides from soybean root nodules by ion-exchange high performance liquid chromatography, ultraviolet spectroscopy and electrospray mass spectrometry. Phytochem. Anal. 9: 171-176 (1998) https://doi.org/10.1002/(SICI)1099-1565(199807/08)9:4<171::AID-PCA396>3.0.CO;2-9
  21. Le Nest G, Caille O, Woudstra M, Roche S, Guerlesquin F, Lexa D. Zn-polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: I optical and NMR studies. Inorgan. Chim. Acta 357: 775-784 (2004) https://doi.org/10.1016/j.ica.2003.09.014
  22. Dellus V, Mila I, Scalbert A, Menard C, Michon V, Herve du Penhoat CLM. Douglas-fir polyphenols and heartwood formation. Phytochemitry 45: 1573-1578 (1997) https://doi.org/10.1016/S0031-9422(97)00245-8
  23. Mabry TJ, Markham KR, Thomas MB. The systematic identification of flavonoids. Springer, New York, NY, USA. pp. 35-61 (1970)
  24. Boudet AC, Cornard JP, Merlin JC. Conformational and spectroscopic investigation of 3-hydroxyflavone-aluminium chelates. Spectrochim. Acta Part A 56: 829-839 (2000) https://doi.org/10.1016/S1386-1425(99)00284-X
  25. Cornard JP, Boudet AC, Merlin JC. Complexes of Al(III) with 3'4'-dihydroxy-flavone: characterization, theoretical and spectroscopic study. Spectrochim. Acta Part A 57: 591-602 (2001) https://doi.org/10.1016/S1386-1425(00)00412-1
  26. Bergeron C, Marston A, Antus S, Gauthier R, Hostettmann K. Flavonoids from Pyrola elliptica. Phytochemistry 49: 233-236 (1998) https://doi.org/10.1016/S0031-9422(97)00878-9
  27. Harborne JB, Mabry TJ. The flavonoids: advances in research. Chapman and Hall, New York, NY, USA. pp. 417-446 (1982)
  28. Li TM, Li WK, Yu JG. Flavonoids from Artabotrys hexapetalus. Phytochemistry 45: 831-833 (1997) https://doi.org/10.1016/S0031-9422(97)00012-5
  29. Lu Y, Sun Y, Foo LY, McNabb WC, Molan AL. Phenolic glycosides of forage legume Onobrychis viciifolia. Phytochemistry 55: 67-75 (2000) https://doi.org/10.1016/S0031-9422(00)00143-6
  30. Dubeler A, Voltmer G, Gora V, Lunderstadt J, Zeeck A. Phenols from Fagus sylvatica and their role in defence against Cyptococcus fagisuga. Phytochemistry 45: 51-57 (1997) https://doi.org/10.1016/S0031-9422(96)00771-6
  31. Trouillas P, Fagnere C, Lazzaroni R, Calliste C, Marfak A, Duroux JL. A theoretical study of the conformational behavior and electronic structure of taxifolin correlated with the free radical-scavenging activity. Food Chem. 88: 571-582 (2004) https://doi.org/10.1016/j.foodchem.2004.02.009
  32. Markham KR. Flavones, flavonols and their glycosides. In: Methods in Plant Biochemistry, Plant Phenolics. Harborne JB (ed). Academic Press, New York, NY, USA. pp. 197-235 (1989)
  33. Marfak A, Trouillas P, Allais DP, Calliste CA, Cook-Moreau J, Duroux JL. Reactivity of flavonoids with 1-hydroxyethyl radical: a ${\gamma}$-radiolysis study. Biochim. Biophy. Acta 1670: 28-39 (2004) https://doi.org/10.1016/j.bbagen.2003.10.010
  34. Couladis M, Baziou P, Verykokidou E, Loukis A. Antioxidant activity of polyphenols from Hypericum triquetrifolium Turra. Phytother. Res. 16: 769-770 (2002) https://doi.org/10.1002/ptr.1062
  35. Lewis CE, Walker JRL, Lancaster JE, Sutton KH. Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. J. Sci. Food Agric. 77: 45-57 (1998) https://doi.org/10.1002/(SICI)1097-0010(199805)77:1<45::AID-JSFA1>3.0.CO;2-S
  36. Peng ZF, Strack D, Baumert A, Subramaniam R, Goh NK, Chia TF, Tan SN, Chia LS. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry 62: 219-228 (2003) https://doi.org/10.1016/S0031-9422(02)00504-6
  37. Lee JY, Moon SO, Kwon YJ, Rhee SJ, Park HR, Choi SW. Identification and quantification of anthocyan ins and flavonoids in mulberry (Morus sp.) cultivars. Food Sci. Biotechnol. 13:176-184 (2004)
  38. Rice-Evans CA, Miller NJ, Paganaga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  39. Luximon-Ramma A, Bahorun T, Crozier A, Zbarsky V, Datla KP, Dexter DT, Aruoma OI. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Res. Int. 38: 357-367 (2005) https://doi.org/10.1016/j.foodres.2004.10.005
  40. van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511-517 (1999) https://doi.org/10.1016/S0308-8146(99)00089-8
  41. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  42. Seog HM, Jung CH, Kim YS, Park HS. Phenolic acids and antioxidant activities of wild ginseng (Panax ginseng C. A. Meyer) leaves. Food Sci. Biotechnol. 14: 371-374 (2005)
  43. Gombau L, Garcia F, Lahoz A, Fabre M, Roda-Navarro P, Majano P, Alonso-Lebrero JL, Pivel JP, Castell JV, Gomez-Lechon MJ, Gonzalez S. Polypodium leucotomos extract: antioxidant activity and disposition. Toxicol. In Vitro 20: 464-471 (2006) https://doi.org/10.1016/j.tiv.2005.09.008