Recovery of Lactic Acid from Fermentation Broth Using Precipitation and Reactive Distillation

발효액으로부터 침전과 반응증류를 이용한 젖산의 회수

  • Park, Suk-Chan (Department of Biological Engineering, Inha University) ;
  • Lee, Sang-Mok (Department of Biological Engineering, Inha University) ;
  • Kim, Young-Jun (Department of Biological Engineering, Inha University) ;
  • Kim, Woo-Sik (Department of Chemical Engineering, Kyung Hee University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • Published : 2006.06.28

Abstract

Precipitation and reactive distillation were employed to recover lactic acid from fermentation broth. Lime was initially added to fermentation broth in order to convert soluble lactic acid to an insoluble calcium lactate form. Drowning-out crystallization was used to decrease the solubility of calcium lactate by adding ethanol as a co-precipitant. In the ideal solution of organic acids as well as fermentation broth, precipitation experiments were performed with varying amounts of ethanol. Precipitation process was followed by reactive distillation. Carboxylate salts formed in the previous precipitation process were mixed with carbon dioxide and triethylamine to precipitate as calcium carbonate. The remaining liquid was distilled for 1 hr at different temperatures. Triethylamine and water were recovered from the top of the distiller, while organic acids, inducing lactic acid as a main component remained in feeding bottle. The yield of recovered lactic acid was 67.5% with the purity of 99.7%.

본 연구에서는 에탄올 농도에 따른 모델용액과 발효액에서 여러 유기산들의 침전거동을 조사하였다. 발효액에서 에탄올의 농도가 높을수록 Ca(LA)2의 침전양이 많았다. Ca(LA)2의 침전효과는 발효액 내에서도 비슷하게 관찰되었다. 모델용액이나 발효액과의 혼합물 대비 30%(v/v)로 에탄올을 첨가하였을 때 젖산분리 공정의 불순물로 존재하는 다른 organic salt들의 침전율도 높았다. 따라서 전체 젖산회수공정의 효율에 대한 연구에서는 에탄올과 발효액의 혼합비율을 20%로 하였다. 반응증류시 일정 온도 이상에서는 젖산회수율이 차이나지 않았다. 에탄올이 첨가된 발효액에서는 대조군과 비교하여 최종젖산 회수율이 38.9% 증가하였다. 또한, 다른 유기산들을 포함한 회수액에서의 순도도 99.7%에 달하였다. 이러한 젖산 회수율의 증가는 owning-out crystallization에 의한 Ca(LA)2의 용해도 감소에 기인한 것으로 판단한다. 본 실험 이후에 더 높은 젖산 회수와 정제 효율을 얻기 위해서는 에탄올의 첨가에 따른 유기산의 거동과, 반응증류에서 사용되는 triethylamine의 양과 반응시간에 대한 검토가 필요할 것으로 사료된다.

Keywords

References

  1. Roy, T. B. V., H. W. Blanch, and C. R. Wilke (1982), Lactic acid production by Lactobacillus delbrueckii in a hollow fiber fermenter, Biotechnol. Lett. 8, 483-488
  2. Demirci, A. and A. L. Pometto III (1995), Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production, Appl. Microbiol. Biotechnol. 43, 585-589 https://doi.org/10.1007/BF00164758
  3. Ho, G. K. L., A. L. Pometto III, and P. N. Hinz (1997), Optimization of L-(+)-lactic acid production by ring and disk plastic composite supports through repeated-batch biofilm fermentation, Appl. Environ. Microbiol. 63, 2533-2542
  4. Wasewar, K. L., A. B. M. Heesink, G. F. Versteeg, and V. G. Pangarkar (2002), Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol, J. Chem. Tech. Biotechnol. 77, 168 https://doi.org/10.1002/jctb.545
  5. Evangelista, R. L. and Z. L. Nikolov (1996), Recovery and purification of lactic acid from fermentation broth by adsorption, Appl. Biochem. Biotechnol. 57-58, 471-480 https://doi.org/10.1007/BF02941688
  6. Zihao, W. and Z. Kefeng (1995), Kinetics and mass transfer for lactic acid recovery with anion exchange method in fermentation solution, Biotechnol. Bioeng. 47, 1-7 https://doi.org/10.1002/bit.260470102
  7. Nomura, Y., M. Iwahara, and M. Hongo (1987), Lactic acid production by electrodialysis fermentation using immobilized growing cells, Biotechnol. Bioeng. 30, 788-793 https://doi.org/10.1002/bit.260300613
  8. Evangelista, R. L., A. J. Mangold, and Z. L. Nikolov (1994), Recovery of lactic acid by sorption: resin evaluation, Appl. Biochem. Biotechnol. 45-46, 131-144
  9. Timmer, J. M. K., H. C. Van der Horst, and T. Robbertsen (1993), Transport of lactic acid through reverse osmosis and nanofiltration membranes, Journal of Membrane Science 85(2), 205-216 https://doi.org/10.1016/0376-7388(93)85169-W
  10. Davinson, B. H. and C. D. Scott (1992), A proposed biparticle fluidized-bed for lactic acid fermentation and simultaneous adsorption, Biotechnol. Bioeng. 39, 365-368 https://doi.org/10.1002/bit.260390317
  11. Kaufman, E. N., S. P. Cooper, S. L. Clement, and M. H. Little (1995), Use of a biparticle fluidized-bed bioreactor for continuous and simultaneous fermentation and purification of lactic acid, Appl. Biochem. Biotechnol. 45-46, 605-620
  12. Cao, X., H. J. Lee, H. S. Yun, and Y. M. Koo (2001), Solubilities of calcium and zinc lactate in water and water-ethanol mixture, Korean J. Chem. Eng. 18(1), 133-135 https://doi.org/10.1007/BF02707210
  13. Pina, C. M., L. Fernandez-Diaz, M. Prieto, and S. Veintemillas-Verdaguer (2001), Metastability in drowning-out crystallization: precipitation of highly soluble sulphates, J. Crystal Growth 222, 317-327 https://doi.org/10.1016/S0022-0248(00)00937-4
  14. Williamson, S. A. (2000), Conversion of carboxylate salts to carboxylic acids via reactive distillation, M. S. Thesis, Dept. of Chemical Engineering, Texas A&M University, Texas, USA