Nicotinamide Reduces the Infarct Volume in a Rat Model of Transient Middle Cerebral Artery Occlusion

Nicotinamide의 투여가 일시적인 국소허혈로 유발된 흰쥐의 뇌경색에 미치는 영향

Lee, Min-Sup;Ahn, Young-Jun;Choi, Ki-Young;Kang, Gu;Kang, Seong-Sik;Cheong, Il-Young;Lee, Kun-Jai;Kim, Keun-Woo
이민섭;안영준;최기용;강구;강성식;정일영;이건재;김근우

  • Published : 20060400

Abstract

Background : Cerebral ischemia depletes ATP and causes irreversible tissue injury. Nicotinamide is a precursor of NAD$^{+}$ and it is also a poly (ADP-ribose) polymerase (PARP) inhibitor that increases the neuronal ATP concentration and so protects against stroke. Therefore we examined whether nicotinamide could protect against cerebral ischemia by using a model of transient middle cerebral artery occlusion (MCAO) (reperfusion 2 h post ischemia) in Sprague-Dawley rats. Methods : Nicotinamide (500 mg/kg) or normal saline was administered intraperitoneally 24 and 0 h before and after MCAO, respectively. The infarction volumes were determined with triphenyltetrazolium chloride staining 24 h after reperfusion. The nitrotyrosine, PAR polymer and PARP-1 expressions were examined by immunohistochemistry with using brain slices obtained from the rats that were sacrificed at 0, 15, 30, 60 and 120 min after reperfusion. Results : The infarction volumes were significantly attenuated (21.8%, p<0.05). The nitrotyrosine expressions were increased at 0, 15 and 30 min, and those expressions for PARP polymer and PARP-1 were increased at 60 and 120 min, respectively. Nicotinamide partly reduced the expressions for nitrotyrosine and PAR polymer except for PARP-1. Conclusions : These results suggest that nicotinamide may attenuate ischemic brain injury through its antioxidant activity and the inhibition of PARP-1.

Keywords

References

  1. Korea National Statistical Office. Annual Report on the Cause of Death Statistics (2004). 2005. 9. http://www.nso.go.kr/nso2005/ bbs/report/report10/view.jsp?content_id=3343
  2. Sadanaga-Akiyoshi F, Yao H, Tanuma S, et al. Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and $NAD^+$ levels in ischemic core and penumbra. Neurochem Res 2003; 28: 1227-34 https://doi.org/10.1023/A:1024236614015
  3. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263: 687-9 https://doi.org/10.1126/science.8080500
  4. Meli E, Pangallo M, Baronti R, et al. Poly(ADP-ribose) polymerase as a key player in excitotoxicity and post-ischemic brain damage. Toxicol Lett 2003; 139: 153-62 https://doi.org/10.1016/S0378-4274(02)00429-0
  5. Takahashi K, Greenberg JH, Jackson P, Maclin K, Zhang J. Neuroprotective effects of inhibiting poly(ADP-ribose) synthetase on focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1997; 17: 1137-42 https://doi.org/10.1097/00004647-199711000-00001
  6. Takahashi K, Greenberg JH. The effect of reperfusion on neuroprotection using an inhibitor of poly (ADP-ribose) polymerase. Neuroreport 1999; 10: 2017-22 https://doi.org/10.1097/00001756-199907130-00005
  7. Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH. Post-treatment with an inhibitor of poly (ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res 1999; 829: 46-54 https://doi.org/10.1016/S0006-8993(99)01335-9
  8. Tokime T, Nozaki K, Sugino T, Kikuchi H, Hashimoto N, Ueda K. Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. J Cereb Blood Flow Metab 1998; 18: 991-7 https://doi.org/10.1097/00004647-199809000-00008
  9. Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J 2003; 44: 85-95 https://doi.org/10.1093/ilar.44.2.85
  10. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci 1999; 22: 391-7 https://doi.org/10.1016/S0166-2236(99)01401-0
  11. Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends in Pharmacol Sci 1999; 20: 171-81 https://doi.org/10.1016/S0165-6147(99)01292-4
  12. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84-91 https://doi.org/10.1161/01.STR.20.1.84
  13. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 1986; 8: 1-8 https://doi.org/10.3995/jstroke.8.1
  14. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996; 27: 1616-22 https://doi.org/10.1161/01.STR.27.9.1616
  15. Memezawa H, Minamisawa H, Smith ML, Siesjo BK. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 1992; 89: 67-78
  16. DeVries AC, Nelson RJ, Traystman RJ, Hurn PD. Cognitive and behavioral assessment in experimental stroke research: Will it prove useful? Neurosci Biobehav Rev 2001; 25: 325-42 https://doi.org/10.1016/S0149-7634(01)00017-3
  17. Mokudai T, Ayoub IA, Sakakibara Y, Lee E-J, Ogilvy CS, Maynard KI. Delayed Treatment with nicotinamide (vitamin B3) improves neurological outcome and reduces infarct volume after transient focal cerebral ischemia in wistar rats. Stroke 2000; 31: 1679-85 https://doi.org/10.1161/01.STR.31.7.1679
  18. Chang ML, Yang J, Kem S, et al. Nicotinamide and ketamine reduce infarct volume and DNA fragmentation in rats after brain ischemia and reperfusion. Neurosci Lett 2002; 322: 137-40 https://doi.org/10.1016/S0304-3940(01)02520-4
  19. Erdelyi K, Bakondi E, Gergely P, Szabo C, Virag L. Pathophysiologic role of oxidative stress-induced poly(ADP-ribose) polymerase-1 activation: focus on cell death and transcriptional regulation. Cell Mol Life Sci 2005; 62: 751-9 https://doi.org/10.1007/s00018-004-4506-0
  20. Liaudet L, Szabo E, Timashpolsky L, Virag L, Cziraki A, Szabo C. Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. Br J Pharmacol 2001; 133: 1424-30 https://doi.org/10.1038/sj.bjp.0704185
  21. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309-12 https://doi.org/10.1126/science.281.5381.1309
  22. Mukherjee SK, Klaidman LK, Yasharel R, Adams JD Jr. Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol 1997; 330: 27-34 https://doi.org/10.1016/S0014-2999(97)00171-4
  23. Klaidman LK, Mukherjee SK, Adams JD JR. Oxidative changes in brain pyridine nucleotides and neuroprotection using nicotinamide. Biochim Biophys Acta 2001; 1525: 136-48 https://doi.org/10.1016/S0304-4165(00)00181-1
  24. Folbergrova J, Memezawa H, Smith ML, Siesjo BK. Focal and perifocal changes in tissue energy state during middle cerebral artery occlusion in normo- and hyperglycemic rats. J Cereb Blood Flow Metab 1992; 12: 25-33 https://doi.org/10.1038/jcbfm.1992.4
  25. Phillis JW, Perkins LM, Smith-Barbour M, O'Regan MH. Oxypurinol enhanced postischemic recovery of the rat brain involves preservation of adenine nucleotides. J Neurochem 1995; 64: 2177-84 https://doi.org/10.1046/j.1471-4159.1995.64052177.x
  26. Yang J, Klaidman LK, Nalbandian A, et al. The effects of nicotinamide on energy metabolism following transient focal cerebral ischemia in Wistar rats. Neurosci Lett 2002; 333: 91-4 https://doi.org/10.1016/S0304-3940(02)01005-4
  27. Nagayama T, Simon RP, Chen D, et al. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J Neurochem 2000; 74: 1636-45 https://doi.org/10.1046/j.1471-4159.2000.0741636.x
  28. Yang J, Adams JD. Structure activity relationships for nicotinamide in the treatment of stroke. Letters in Drug Design & Discovery 2004; 1: 58-65 https://doi.org/10.2174/1570180043485716