Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Sang Min (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jong-Hoon (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Byung-Hwan (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Yoon, In-Soo (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Joon-Hee (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Choi, Sun-Hye (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Sang-Mok (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Yong-Sun (Department of Chemistry, Konkuk University) ;
  • Lee, Jung-Ha (Department of Life Science, Sogang University,) ;
  • Kim, Sung Soo (Korea Food Research Institute) ;
  • Kim, Hyoung-Chun (Neurotoxicology Program, College of Pharmacy, Korea Institute of Drug Abuse, Kangwon National University) ;
  • Lee, Boo-Yong (College of Medicine, Pochon CHA University) ;
  • Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2005.08.09
  • Accepted : 2005.12.14
  • Published : 2006.02.28

Abstract

In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

Keywords

Acknowledgement

Supported by : Korean Food Research Institute, Ministry of Science and Technology Korea

References

  1. Berridge, M. J., Bootman, M. D., and Lipp, P. (1998) Calcium - a life and death signal. Nature 395, 645-668 https://doi.org/10.1038/27094
  2. Bourinet, E., Soong, T. W., Stea, A., and Snutch, T. P. (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA 93, 1486−1491
  3. Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623−634 https://doi.org/10.1016/0896-6273(88)90162-6
  4. Choi, S., Jung, S. Y., Kim, C. H., Kim, H. S., Rhim, H., et al. (2001) Effect of ginsenosides on voltage-dependent $Ca^{2+}$ channel subtypes in bovine chromaffin cells. J. Ethnopharmacol. 74, 75-81 https://doi.org/10.1016/S0378-8741(00)00353-6
  5. Choi, S., Jung, S. Y., Lee, J. H., Sala, F., Criado, M., et al. (2002a) Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 442, 37−45
  6. Choi, S., Jung, S. Y., Ko, Y. S., Koh, S. R., Rhim, H., et al. (2002b) Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus oocytes. Mol. Pharmacol. 61, 928−935 https://doi.org/10.1124/mol.61.4.928
  7. Choi, S., Lee, J. H., Oh, S., Rhim, H., Lee, S. M., et al. (2003) Effects of ginsenoside $Rg_{2}$ on the 5-$HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 15, 108−113
  8. Dascal, N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317−387 https://doi.org/10.3109/10409238709086960
  9. Guyot, M. C., Palfi, S., Stutzmann, J. M., Maziere, M., Hantraye, P., et al. (1997) Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats. Neuroscience 81, 141-149 https://doi.org/10.1016/S0306-4522(97)00192-9
  10. Hasegawa, H., Suzuki, R., Nagaoka, T., Tezuka, Y., Kadota, S., et al. (2002) Prevention of growth and metastasis of murine melanoma through enhanced natural-killer cytotoxicity by fatty acid-conjugate of protopanaxatriol. Biol. Pharm. Bull. 25, 861-866 https://doi.org/10.1248/bpb.25.861
  11. Jeong, S. M. and Nah, S. Y. (2005) Ginseng and ion channels: are ginsenosides, active components of Panax ginseng, differential modulator of ion channels. J. Ginseng Res. 29, 19−26 https://doi.org/10.5142/JGR.2005.29.1.019
  12. Jeong, S. M., Lee, J. H., Kim, J. H., Lee, B. H., Yoon, I. S., et al. (2004) Stereospecificity of ginsenoside $Rg_{3}$ action on ion channels. Mol. Cells 18, 383−389
  13. Kim, H. S., Lee, J. H., Koo, Y. S., and Nah, S. Y. (1998) Effects of ginsenosides on $Ca^{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res. Bull. 46, 245−251 https://doi.org/10.1016/S0361-9230(98)00014-8
  14. Kim, D., Song, I., Keum, S., Lee, T., Jeong, M. J., et al. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) Ttype $Ca^{2+}$ channels. Neuron 31, 35−45
  15. Kim, D., Park, D., Choi, S., Sun, M., Kim, C., et al. (2003) Thalamic control of visceral nociception mediated by T-type $Ca^{2+}$ channels. Science 302, 117−119 https://doi.org/10.1126/science.1088886
  16. Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Jeong, S. M., et al. (2005a) A role for the carbohydrate portion of ginsenoside Rg3 in $Na^{+}$ channel inhibition. Mol. Cells 19, 137−142
  17. Kim, J. H., Kim, S., Yoon, I. S., Lee, J. H., Jang, B. J., et al. (2005b) Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 48, 743−756 https://doi.org/10.1016/j.neuropharm.2004.12.013
  18. Kim, S., Ahn, K., Oh, T. H., Nah, S. Y., and Rhim, H. (2002) Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 296, 247-254 https://doi.org/10.1016/S0006-291X(02)00870-7
  19. Kudo, K., Tachikawa, E., Kashimoto, T., and Takahashi, E. (1998) Properties of ginseng saponin inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Eur. J. Pharmacol. 341, 139−144 https://doi.org/10.1016/S0014-2999(97)01350-2
  20. Lee, J. H., Daud, A. N., Cribbs, L. L., Lacerda, A. E., Perevrzev, A., et al. (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19, 1912-1921
  21. Lee, J. H., Kim, S. H., Kim D, Hong, H. N., and Nah, S. Y. (2001) Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainate-induced neurotoxicity in rat hippocampus. Neurosci. Lett. 325, 129-133 https://doi.org/10.1016/S0304-3940(02)00256-2
  22. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., et al. (2004) Differential effect of ginsenoside metabolites on the 5-$HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 17, 51−56
  23. Lee, J. H., Jeong, S. M., Kim, J. H., Lee, B. H., Yoon, I. S., et al. (2005) Characteristics of ginsenoside $Rg_{3}$-mediated brain $Na^{+}$ current inhibition. Mol. Pharmacol. 68, 1114−1126 https://doi.org/10.1124/mol.105.015115
  24. Liu, D., Li., B., Liu, Y., Attele, A. S., Kyle, J. W., et al. (2001) Voltage-dependent inhibition of brain $Na^{+}$ channels by American ginseng. Eur. J. Pharmacol. 413, 47-54 https://doi.org/10.1016/S0014-2999(01)00735-X
  25. Miller, R. J. (2001) Rocking and rolling with $Ca^{2+}$ channels. Trends Neurosci. 24, 445−449 https://doi.org/10.1016/S0166-2236(00)01859-2
  26. Mori, Y., Friedrich, T., Kim, M. S., Mikami, A., Nakai, J., et al. (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398−402 https://doi.org/10.1038/350398a0
  27. Murakami, M., Nakagawasai, O., Suzuki, T., Mobarakeh, I., Sakurada, Y., et al. (2004) Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel alpha 1 subunits in the dorsal horn of spinal cord in mice. Brain Res. 1024, 122−129 https://doi.org/10.1016/j.brainres.2004.07.066
  28. Nah, S. Y. (1997) Ginseng, recent advances and trend. Korea J. Ginseng Sci. 21, 1−12
  29. Nah, S. Y. and McCleskey, E. W. (1994) Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as ${\mu}$-type opioids. J. Ethnopharmacol. 42, 45-51 https://doi.org/10.1016/0378-8741(94)90022-1
  30. Nah, S. Y., Park, H. J., and McCleskey, E. W. (1995) A trace component of ginseng that inhibit $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 92, 8739−8743
  31. Nooney, J. and Lodge, D. (1996) The use of invertebrate peptide toxins to establish $Ca^{2+}$ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices. Eur. J. Pharmacol. 306, 41−50 https://doi.org/10.1016/0014-2999(96)00195-1
  32. Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., et al. (1994) Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1- subunit. Nature 368, 67-70 https://doi.org/10.1038/368067a0
  33. Rhim, H., Kim, H., Lee, D. Y., Oh, T. H., and Nah, S. Y. (2002) Ginseng and ginsenoside $Rg_{3}$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436, 151−158 https://doi.org/10.1016/S0014-2999(01)01613-2
  34. Sala, F., Mulet, J., Choi, S., Jung, S. Y., Nah, S. Y., et al. (2002) Effects of ginsenoside $Rg_{2}$ on human neuronal nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 301, 1052−1059 https://doi.org/10.1124/jpet.301.3.1052
  35. Schneider, T., Wei, X., Olcese, R., Costantin, J. L., Neely, A., et al. (1994) Molecular analysis and functional expression of the human type E neuronal $Ca^{2+}$ channel alpha 1 subunit. Receptors Channels 2, 255−270.
  36. Tachikawa, E., Kudo, T., Kashimoto, T., and Takashshi, E. (1995) Ginseng saponins reduce acetylcholine-evoked $Na^{+}$ influx and catecholamine secretion in bovine adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 273, 629-636
  37. Takahashi, T. and Momiyama, A. (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366, 156−158 https://doi.org/10.1038/366156a0
  38. Wakabayashi, C., Hasegawa, H., Murata, J., and Saiki, I. (1997) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9, 411−417
  39. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J., and Saiki, I. (1998) An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Biophys. Res. Commun. 249, 725− 730
  40. Wang, G., Dayanithi, G., Newcomb, R., and Lemos, J. R. (1999) An R-type $Ca^{2+}$ current in neurohypophysial terminals preferentially regulates oxytocin secretion. J. Neurosci. 19, 9235-9241
  41. Watanabe, M., Sakuma, Y., and Kato, M. (2004) High expression of the R-type voltage-gated $Ca^{2+}$ channel and its involvement in $Ca^{2+}$-dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology 45, 2375−2383
  42. Wheeler, D. B., Randall, A., and Tsien, R. (1994) Roles of Ntype and Q-type $Ca^{2+}$ channels in supporting hippocampal synaptic transmission. Science 264, 107-111 https://doi.org/10.1126/science.7832825