Amplification of a conducting polymer-based DNA sensor signal by CdS nanoparticles

Travas-Sejdic, J.;Peng, H.;Cooney, R.P.;Bowmaker, G.A.;Cannell, M.B.;Soeller, C.

  • Published : 20060000

Abstract

A novel DNA sensor based on a polypyrrole substrate and nanoparticle labeled ODN probes was prepared and characterized. In this sensor type the DNA sample to be analyzed was physically entrapped into the polypyrrole film during electropolymerization. The resulting sensor film was then exposed to ODN probes in solution. Sensitive electrical readout was achieved by electrochemical impedance spectroscopy. A further amplification in sensor response (as compared to using unlabeled ODN probes) was achieved by tagging ODN probes with CdS nanoparticles. We suggest that the sensor response is caused by an increase in charge transfer resistance upon binding of complementary CdS–ODN nanoparticle probes. The selectivity of the sensor was tested with various match and mismatch sequences. By appropriate choice of hybridization conditions the sensor was able to robustly discriminate between the exact match and a two-point mismatch sequence.

Keywords

References

  1. N.R. Isola, D.L. Stokes, T. Vo-Dinh, Anal. Chem. 70 (1998) 1352 https://doi.org/10.1021/ac970901z
  2. P.A.E. Piunno, U.J. Krull, R.H.E. Hudson, M.J. Damha, H. Cohen, Anal. Chim. Acta 288 (1994) 205 https://doi.org/10.1016/0003-2670(93)E0611-A
  3. C.E. Immoos, S.J. Lee, M.W. Grinstaff, ChemBioChem 5 (2004) 1100 https://doi.org/10.1002/cbic.200400045
  4. Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami, K. Makino, J. Am. Chem. Soc. 114 (1992) 8299 https://doi.org/10.1021/ja00047a056
  5. T.G. Drummond, M.G. Hill, J.K. Barton, Nature Biotechnol. 21 (2003) 1192 https://doi.org/10.1038/nbt873
  6. J. Wang, M. Jiang, Langmuir 16 (2000) 2269 https://doi.org/10.1021/la991122b
  7. P. Singhal, W.G. Kuhr, Anal. Chem. 69 (1997) 4828 https://doi.org/10.1021/ac970731q
  8. E. Katz, I. Willner, Electroanalysis 15 (2003) 913 https://doi.org/10.1002/elan.200390114
  9. C.J. Yu, Y. Wan, H. Yowanto, J. Li, C. Tao, M.D. James, C.L. Tan, G.F. Blackburn, T.J. Meade, J. Am. Chem. Soc. 123 (2001) 11155 https://doi.org/10.1021/ja010045f
  10. H. Peng, C. Soeller, N. Vigar, P.A. Kilmartin, M. Cannell, G.A. Bowmaker, R.P. Cooney, J. Travas-Sejdic, Biosens. Bioelectron. 20 (2005) 1821 https://doi.org/10.1016/j.bios.2004.07.013
  11. N. Lassalle, P. Mailley, E. Vieil, T. Livache, A. Roget, J.P. Correia, L.M. Abrantes, J. Electroanal. Chem. 509 (2001) 48 https://doi.org/10.1016/S0022-0728(01)00537-X
  12. F. Garnier, H. Korri-Youssoufi, P. Srivastava, B. Mandrand, T. Delair, Synth. Met. 100 (1999) 89 https://doi.org/10.1016/S0379-6779(98)00169-6
  13. T. Livache, A. Roget, E. Dejean, C. Barthet, G. Bidan, R. Teoule, Synth. Met. 71 (1995) 2143 https://doi.org/10.1016/0379-6779(94)03199-G
  14. T.-Y. Lee, Y.-B. Shim, Anal. Chem. 73 (2001) 5629 https://doi.org/10.1021/ac015572w
  15. J. Wang, M. Jiang, A. Fortes, B. Mukherjee, Anal. Chim. Acta 402 (1999) 7 https://doi.org/10.1016/S0003-2670(99)00531-0
  16. J. Wang, G. Liu, A. Merkoci, J. Am. Chem. Soc. 125 (2003) 3214 https://doi.org/10.1021/ja029668z
  17. Y. Xu, H. Cai, P.-G. He, Y.-Z. Fang, Electroanalysis 16 (2004) 150 https://doi.org/10.1002/elan.200302923
  18. J. Wang, D. Xu, A.N. Kawde, R. Polsky, Anal. Chem. 73 (2001) 5576 https://doi.org/10.1021/ac0107148
  19. L.C. Jiang, Y. Xia, J. Wen-Sheng, Y. Jian, X. Bai-Quan, T.-J. Li, Gaodeng Xuexiao Huaxue Xuebao 22 (2001) 1397