Effect of Lattice Mismatch on the Properties of Self-Assembled InAs/InAlAs/InP Quantum Dots

Koo, Bon-Heun;Lee, Chan-Gyu;Chon, Gum-Bae;Im, Hung-su;Yao, Takahumi

  • Published : 20060000

Abstract

We present the results of the formation of InAs quantum dots (QDs) on (100) In1.xAlxAs (In- AlAs)/InP substrates by using relaxed InAlAs buffer layers with different compositions. Variations of the growth-mode-transition thickness, the surface morphology, and the emission-peak positions of InAs QDs as functions of the lattice mismatch between InAs and the InAlAs buffer layer [dotbuffer (DB) mismatch] have been evaluated by using reflection high energy electron diffraction, atomic force microscopy, and photoluminescence (PL), respectively. The growth of InAs QDs on InAlAs/InP strongly depends on the DB mismatch. With increasing DB mismatch, the critical thickness of the InAs QD formation decreases, the average size of the QDs decreases, and the density of the QDs increases under the fixed growth condition. The PL peak positions for the QDs shift to high energy as the DB mismatch increases, corresponding to a decrease in QD size and an increase in the barrier band gap.

Keywords

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 930 (1982) https://doi.org/10.1063/1.92982
  2. K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama and H. Ishikawa, Appl. Phys. Lett. 76, 3349 (2000) https://doi.org/10.1063/1.126644
  3. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata and H. Ishikawa, Jpn. J. Appl. Phys., Part 2 40, L488 (2001) https://doi.org/10.1143/JJAP.40.L488
  4. V. M. Ustinov, E. R. Weber, S. Ruvimov, Z. Liliental-Weber, A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, A. F. Tsatsul'nikov and P. S. Kop'ev, Appl. Phys. Lett. 72, 362 (1998) https://doi.org/10.1063/1.120737
  5. J. Brault, M. Gendry, G. Grenet, G. Hollinger, Y. Desieres and T. Benyattou, Appl. Phys. Lett. 73, 2932 (1998) https://doi.org/10.1063/1.122634
  6. L. Gonzales, J. M. Garcia, R. Garcia, F. Briones, J. Martinez-Pastor and C. Ballesteros, Appl. Phys. Lett. 76, 1104 (2000) https://doi.org/10.1063/1.125952
  7. B. H. Koo, T. Hanada, H. Makino and T. Yao, Appl. Phys. Lett. 79, 4331 (2001) https://doi.org/10.1063/1.1428763
  8. E. G. Jeong, P. D. Dapkus, U. H. Lee, J. S. Yim, D. Lee and B. T. Lee, Appl. Phys. Lett. 78, 1171 (2001) https://doi.org/10.1063/1.1350620
  9. J. S. Kim, J. H. Lee, S. H. Hong, W. S. Han, H. S. Kwack and D. K. Oh, Appl. Phys. Lett. 83, 3785 (2003) https://doi.org/10.1063/1.1623947
  10. B. H. Koo, J. H. Chang, H. Makino, T. Hanada, T. Yao, Y. G. Park, D. Shindo, J. H. Lee, C. G. Lee and Y. D. Kim, J. Korean Phys. Soc. 42, S246 (2003)
  11. H. Cheong, Y. J. Jeon, H. Hwang, K. Park and E. Yoon, J. Korean Phys. Soc. 44, 697 (2004) https://doi.org/10.3938/jkps.44.697
  12. J. S. Kim, E. K. Kim, H. Hwang, K. Park, E. Yoon, I. W. Park and Y. J. Park, J. Korean Phys. Soc. 45, 170 (2004)
  13. B. H. Koo, T. Hanada, H. Makino, J. H. Chang and T. Yao, J. Cryst. Growth 229, 142 (2001) https://doi.org/10.1016/S0022-0248(01)01109-5
  14. B. W. Wessels, J. Vac. Sci. Technol. B 5, 1056 (1997)
  15. H. Li, J. Wu, B. Xu, J. Liang and Z. Wang, Appl. Phys. Lett. 72, 2123 (1998) https://doi.org/10.1063/1.121296
  16. X. Wallart, O. Schuler, D. Deresmes and F. Mollot, Appl. Phys. Lett. 76, 2080 (2000) https://doi.org/10.1063/1.126261
  17. D. Leonard, K. Pond and P. M. Petroff, Phys. Rev. B 50, 11687 (1994) https://doi.org/10.1103/PhysRevB.50.11687
  18. M. A. Cotta, R. A. Hamm, T. W. Staley, S. N. G. Chu, L. R. Harriott, M. B. Panish and H. Temkin, Phys. Rev. Lett. 70, 4106 (1993) https://doi.org/10.1103/PhysRevLett.70.4106