Structural Clustering and Magnetic Phase Separation in La0.7(Ca1-ySry)0.3MnO3 Thin Films

Prokhorov, V. G.;Park, J. S.;Kang, J.-H.;Yu, K. K.;Park, S. Y.;Komashko, V. A.;Svetchnikov, V. L.;Lee, Y. P.

  • Published : 20060000

Abstract

The structural, magnetic, and transport properties of the La0.7(Ca1.ySry)0.3MnO3 films prepared by rf-magnetron sputtering have been investigated. At 0.3 y 0.5, both the rhombohedral (R3c) and orthorhombic (Pnma) crystal phases in the form of nanoscale clusters were found to co-exist at room temperature. The observed structural clustering is accompanied by two-stage magnetic and electronic transition, has a metallurgical origin, and is governed by the nonuniform distribution of the lattice strain through the film. The magnetotransport properties of the films can be explained within the framework of a field-dependent activation energy model, considering the spin-dependent trapping of charges and the Weiss-magnetization contribution.

Keywords

References

  1. Collosal Magnetoresistance Oxides, edited by Y. Tokura (Gordon and Breach, London, 1999)
  2. E. Dagotto, T. Hotta and A. Moreo, Phys. Rep. 344, 1 (2001) https://doi.org/10.1016/S0370-1573(00)00121-6
  3. V. G. Prokhorov, V. A. Komashko, V. L. Svetchnikov, Y. P. Lee, K. H. Cho and S. Y. Park, J. Korean Phys. Soc. 45, 22 (2004)
  4. S. Y. Park, Y. P. Lee and V. G. Prokhorov, J. Korean Phys. Soc. 45, 47 (2004)
  5. J. S. Park, K. K. Yu, H. K. Lee, H. R. Bae, Y. P. Lee and V. G. Prokhorov, J. Korean Phys. Soc. 46, S201 (2005)
  6. V. Kiryukhin, T. Y. Koo, H. Ishibashi, J. P. Hill and S.-W. Cheong, Phys. Rev. B 67, 064421 (2003) https://doi.org/10.1103/PhysRevB.67.064421
  7. P. G. Radaelli, M. Morezio, H. Y. Hwang, S.-W. Cheong and B. Batlogg, Phys. Rev B 54, 8992 (1996) https://doi.org/10.1103/PhysRevB.54.8992
  8. P. G. Radaelli, M. Morezio, H. Y. Hwang and S.-W. Cheong, J. Solid State Chem. 122, 444 (1996) https://doi.org/10.1006/jssc.1996.0140
  9. Y. Tomioka, A. Asamitsu and Y. Tokura, Phys. Rev. B 63, 024421 (2000) https://doi.org/10.1103/PhysRevB.63.024421
  10. A. N. Ulyanov, S. C. Yu, N. Yu. Starostyuk, N. E. Pismenova, Y. M. Moon and K. W. Lee, J. Appl. Phys. 91, 8900 (2002) https://doi.org/10.1063/1.1446132
  11. V. G. Prokhorov, G. G. Kaminsky, V. A. Komashko, J. S. Park and Y. P. Lee, J. Appl. Phys. 90, 1055 (2001) https://doi.org/10.1063/1.1379049
  12. V. G. Prokhorov, G. G. Kaminsky, V. A. Komashko, Y. P. Lee, J. S. Park and H. C. Ri, Appl. Phys. Lett. 80, 2707 (2002) https://doi.org/10.1063/1.1470244
  13. P. Wagner, I. Gordon, L. Trappeniers, J. Vanacken, F. Herlach, V. V. Moshchalkov and Y. Bruynseraede, Phys. Rev. Lett. 81, 3980 (1998) https://doi.org/10.1103/PhysRevLett.81.3980
  14. M. Viret, L. Ranno and J. M. D. Coey, Phys. Rev. B 55, 8067 (1997) https://doi.org/10.1103/PhysRevB.55.8067