Effects of NaCl on the Growth and Inorganic Ion Contents of Green Pepper 'Nokwang' and Bell Pepper 'Newace'

NaCl 처리가 풋고추 '녹광'과 피망 '뉴에이스'의 생육 및 무기이온 함량에 미치는 영향

Park, Eon-Jeong;Park, Jung-Chun;Lee, Jeung-Ju;Son, Yeong-Gul
박언정;박중춘;이증주;손영걸

  • Published : 20060000

Abstract

This study was executed to investigate the effects of NaCl on the growth, soil responses and inorganic ion contents of green pepper (Capsicum annuum L.) ‘Nokwang’ and bell pepper ‘Newace’ with different seedling age. Plant height, the number of leaves, stem diameter, the number of flowers, the number of fruits, maximun fruit size and weight, total fruit weight, and SPAD value decreased with increment of NaCl concentration; 30-day-old seedlings were more sensitive to NaCl than 40-day-old seedlings. EC of soil in the 40-day-old seedlings was more increased than the 30-day-old seedlings. Soil pH changed slightly by the NaCl treatment. When grown on hydroponic culture, fresh weight and total nitrogen content decreased with increasing NaCl concentration. ‘Nokwang’ was more resistant to NaCl than ‘Newace’. With increasing NaCl concentration, Na content in the leaves and roots increased, but that of K, Ca, Mg, and P decreased: Their effects were more sensitive in 30-day-old seedlings than 40-day-old seedlings.

본 연구는 NaCl 스트레스가 고추의 생육, 무기이온 함량 및 토성의 변화에 미치는 영향을 파악하기 위해 수행되었다. 토경재배에서는 NaCl 농도가 증가할수록 두 고추품종의 초장, 엽수, 줄기직경, 꽃수, 열매수, 최고 큰 열매의 크기와 무게, 총수량 및 SPAD 값이 감소하였으며, 30일묘는 40일묘보다 NaCl에 대한 감수성이 더 큰 것으로 나타났다. NaCl 스트레스에 의해 고추를 재배한 토양중의 pH는 다소 완만하게 증가하였으나 EC는 급격히 증가하였는데, 40일묘가 30일묘보다 그 정도가 높은 경향이었다. 수경재배 시 NaCl 처리에 의해 생체중과 전질소함량은 감소하였는데 ‘녹광’보다는 ‘뉴에이스’에서 그 정도가 큰 것으로 나타났다. NaCl 처리에 의해 잎과 뿌리에서 Na 함량은 증가하였으나, K, Ca, Mg, P 함량은 감소되는 경향이었는데, 40일묘보다는 30일묘에서 Na 함량의 증가와 다른 무기이온들의 감소정도가 큰 경향이었다.

Keywords

References

  1. Awad, A.S., D.G. Edwards, and L.C. Campbell. 1990. Phosphorus enhancement of salt tolerance of tomato. Crop Sci. 30:123-128 https://doi.org/10.2135/cropsci1990.0011183X003000010028x
  2. Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Ann. Rev. of Phytopathology. 13:295-312 https://doi.org/10.1146/annurev.py.13.090175.001455
  3. Botella, M.A., V. Martinez, J. Pardines, and A. Cerda. 1997. Salinity induced potassium deficiency in maize plants. J. Plant Physiol. 150:200-205 https://doi.org/10.1016/S0176-1617(97)80203-9
  4. Boyer, J.S. 1982. Plant productivity and environment science. Science 218:443-448 https://doi.org/10.1126/science.218.4571.443
  5. Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Hort. 86:247-260 https://doi.org/10.1016/S0304-4238(00)00151-5
  6. Chow, W.S., M.C. Ball, and J.M. Anderson. 1990. Growth and photosynthetic responses of spinach to salinity: Implications of $K^+$ nutrition for salt tolerance. Aust. J. Plant Physiol. 17:563-578 https://doi.org/10.1071/PP9900563
  7. Cramer, G.R., A. Lauchli, and V.S. Polito. 1985. Displacement of $Ca^{2+}\;by\;Na^+ $from plasmalemma of root cells. Plant Physiol. 79:207-211 https://doi.org/10.1104/pp.79.1.1
  8. Gebauer, J., K. El-Siddig, A.A. Salin, and G. Ebert. 2004. Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Scientia Hort. 103:1-8 https://doi.org/10.1016/j.scienta.2004.04.022
  9. Grattan, S.R. and C.M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Hort. 78:127-157
  10. Greenway, H. and R. Munns. 1980. Mechanism of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:149-190 https://doi.org/10.1146/annurev.pp.31.060180.001053
  11. Kwon, T.R., P.J.C. Harris, and W.F. Bourne. 1999. Partitioning of $Na^+,\;K^+$, proline, and total soluble sugar in relation to the salinity tolerance of Brassica juncea and Brassica rapa. J. Kor. Soc. Hort. Sci. 40:425-430
  12. Lauchli, A and E. Epstein. 1990. Plant responses to saline and sodic conditions, p. 113-137. In: K.K. Tanji (ed.), Agricultural salinity assessment and management. Am. Soc. Civil Eng, New York
  13. Lee, Y.M., J. Yun, S.H. Shin, and W.Y. Choi. 1998. Varietal difference in seedling growth and cation contents under NaCl treated rice. Kor. J. Breed. 30:104-113
  14. Lopez, M.V. and S.M.E. Satti. 1996. Calcium and potassiumenhanced growth and yield of tomato under sodium chloride stress. Plant Sci. 114:19-27 https://doi.org/10.1016/0168-9452(95)04300-4
  15. Lutts, S., J.M. Kinet, and J. Bouharmont. 1996. Change in plant response to NaCl during development of rice varieties differing in salinity resistance. J. Exp. Bot. 46:1842-1852
  16. Lynch, J. and A. Lauchli. 1984. Pottassium transport in saltstressed barley roots. Planta 161:295-301 https://doi.org/10.1007/BF00951453
  17. Maggio. A., S. De Pascale, G. Angelino, C. Ruggiero, and G. Barbieri. 2004. Physiological response of tomato to saline irrigation in long-term salinized soils. Europ. J. Agro. 21: 149-159 https://doi.org/10.1016/S1161-0301(03)00092-3
  18. Martinez-Ballesta, M.C., V. Martinez, and M. Carvajal. 2004. Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environ. Exp. Bot. 52:161-174 https://doi.org/10.1016/j.envexpbot.2003.11.009
  19. Munns, R. and A. Termaat. 1986. Whole plant response to salinity. Aust. J. Plant Physiol. 13:143-160 https://doi.org/10.1071/PP9860143
  20. Parida, A.K. and A.B. Das. 2004. Salt tolerance and salinity effects on plants. Ecotoxicology and Environmental Safety 60:324-349 https://doi.org/10.1016/j.ecoenv.2004.06.010
  21. Pieterzyk, D.J. and C.W. Frank. 1979. Analytical chemistry. p. 190, 315, 645. Academic Press, New York
  22. Sanchez-Raya, A.J. and I.C. Delgado. 1996. Mineral nutrient transport by sunflower seedlings grown under saline conditions (NaCl). J. Plant. Nutr. 19:1463-1475 https://doi.org/10.1080/01904169609365212
  23. Savvas, D. and F. Lenz. 1994. Influence of NaCl concentration in the nutrient solution on mineral composition of eggplants grown in sand culture. Angew. Bot. 70:124-127
  24. Seeman, J.D. and C. Critchley. 1985. Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta. 164:151-162 https://doi.org/10.1007/BF00391019
  25. Yeo, A.R., S.J.M. Caporn, and T. Flower. 1985. The effects of salinity upon photosynthesis I rice gas exchange by individual leaves in relation to their salt content. J. Exp. Bot. 36: 1240-1248 https://doi.org/10.1093/jxb/36.8.1240