Selectivity of Pyribenzoxim and Bispyribac-sodium Between Echinochloa crus-galli and Rice (Oryza sativa)

피와 벼에 대한 피리벤족심과 비스피리백-소디움의 선택성

Hwang, Gi-Hwan;Kim, Do-Sun;Lee, Jong-Nam;Gu, Seok-Jin
황기환;김도순;이종남;구석진

  • Published : 20060000

Abstract

Dose-response studies were conducted to compare herbicidal activity and rice selectivity of pyribenzoxim and bispyribac-sodium. When tested with formulations at the constant adjuvant concentration regardless of herbicide dose, the GR90 value (the rate required to inhibit growth by 90%) of pyribenzoxim for barnyardgrass was 8.7 g ai ha-1, while that of bispyribac-sodium was 7.7 g ai ha-1. The GR10 values (the rate required to inhibit growth by 10%) of pyribenzoxim and bispyribac- sodium were 93.3 g and 2.9 g ai ha-1 for Japonica rice and 185.8 and 23.9 g ai ha-1 for Indica rice, respectively. The selectivity indices (GR10 for rice/GR90 for barnyardgrass) of pyribenzoxim for Japonica and Indica rice were 10.7 and 21.3, respectively, while those of bispyribac-sodium were 0.4 and 3.1, respectively. Therefore, selectivities of pyribenzoxim were 6.8 and 28.0 folds greater for Japonica and Indica rice, respectively, than those of bispyribac-sodium. In addition, the selectivity indices of technical ingredients of pyribenzoxim and bispyribac-sodium were 1.5 and 0.5, respectively, showing about 3 folds difference. The selectivity indices of their formulations tested with no adjustment of adjuvant concentration were 1.2 and 0.5, respectively, showing 2 folds difference. These results thus demonstrate that although pyribenzoxim and bispyribac-sodium are similar in herbicidal activity to barnyardgrass, pyribenzoxim is a vastly advanced herbicide in rice selectivity.

피리벤족심과 비스피리백-소디움에 대한 피와 벼의 농도반응을 비교하여 이들의 선택성을 비교하고자 포트시험을 온실에서 수행하였다. 피에 대한 제초효과는 비스피리백-소디움이 피리벤족심보다 약간 높았지만 그 차이는 매우 작았으며, 벼에 대한 약해는 두 제초제 간 현저한 차이가 있어 피리벤족심이 자포니카 벼에는 약 5~30배, 인디카 벼에는 약 8배 안전하였다. 피리벤족심과 비스피리백-소디움에 대한 피의 GR90값과 벼의 GR10값을 상대적으로 비교한 선택성지수를 계산한 결과 원제에 대한 선택성지수는 피리벤족심이 1.5, 비스피리백-소디움이 0.5로써 피리벤족심이 약 3배 선택성이 높았으며, 제제를 직접 비교한 결과 피리벤족심이 1.2, 비스피리백-소디움이 0.5으로 여전히 피리벤족심이 2배 이상 선택성이 높았다. 특히, 전착제 농도를 일정하게 한 조건에서 비교한 결과 자포니카 벼의 경우 피리벤족심의 선택성지수는 10.7, 비스피리백-소디움은 0.4로 약 28배의 선택성의 차이가 났으며, 인디카 벼의 경우 피리벤족심이 21.3, 비스피리백-소디움이 3.1로 약 7배의 선택성 차이가 났다. 결론적으로 피리벤족심과 비스피리백-소디움은 피에 대해 유사한 제초활성을 갖지만, 벼에 대한 안전성은 피리벤족심이 매우 높았으며, 따라서 피리벤족심의 선택성이 아주 높았다.

Keywords

References

  1. Bae, Y. T., J. H. Lee and S. J. Koo. 1997. In vitro acetolactate synthase inhibition of LGC-40863 in rice and barnyardgrass. Kor. J. Weed Sci. 17:66-70
  2. Braverman, M. P and D. L Jordan. 1996. Efficacy of KIH-2023 in dry and water seeded rice (Oryza sativa). Weed Technol. 10:876-882 https://doi.org/10.1017/S0890037X00040951
  3. Bunting, J. A., C. L. Sprague and D. E. Riechers. 2004. Proper adjuvant selection for foramsulfuron activity. Crop Protec. 23:361-366 https://doi.org/10.1016/j.cropro.2003.08.022
  4. Cfrafts, A. S. 1966. Comparative movement of labeled tracers in beans and barley. Proc. Symp. Intl. Atomic Energy Agency. Isotopes in weed control. Vienna, pp. 212-214
  5. Cho, J. H., S. C. Ahn., S. J. Koo., K. H. Joe and H. S. Oh. 1997. LGC-40863 : A new broad spectrum postemergence herbicide. Proc. Brighton Crop Protec. Conf. Brighton, UK, pp. 39-44
  6. Choi, J. S., H. J. Lee., I. T. Hwang., J. Y. Pyon and K. Y. Cho. 1999. Differential susceptibilities of wheat and barley to diphenyl ether herbicide oxyfluorfen. Pestic. Biochem. Physiol. 65:62-72 https://doi.org/10.1006/pest.1999.2429
  7. Eberlein, C. V and R. Behrens. 1984. Propanil selectivity for green foxtail (Setaria viridis) in wheat (Triticum aestivum). Weed Sci. 32:13-16
  8. Fang, S. C. 1958. Absorption, translocation, and metabolism of 2,4-D-l-$C^{14}$ in peas and tomato plants. Weeds. 6:179-186 https://doi.org/10.2307/4040291
  9. Fischer, A. J., C. M. Ateh., D. E. Bayer and J. E. Hill. 2000. Herbicide-resistant early (Echinochloa oryzoides) and late (E. Phyllopogon) watergrass in California rice fields. Weed Sci. 48:225-230 https://doi.org/10.1614/0043-1745(2000)048[0225:HREOAE]2.0.CO;2
  10. Grichar, W. J and D. C. Sestak. 2000. Effect of adjuvants on control nutsedge (Cyperus esculentus and C. rotundas) by imazapic and imazethapyr. Crop Protec. 19:461-465 https://doi.org/10.1016/S0261-2194(00)00040-5
  11. Han, F. C. 2001. Effect of Nominee (bispyribac-sodium) on rice cutgrass (Leersia oryzoides) in water seeded rice in Heilongjiang, China. Proc. of 18th Asian Pacific Weed Sci. Soc. Conf. Beijing, China, pp. 787-792
  12. Hatzios, K. K and D. Penner. 1982. Metabolism of herbicides in higher plants. Burgess Publ. Co., Minneapolis, MN. pp. 6-7
  13. Kobayashi, K., M. Yokohama., O. Watanabe., H. Sadohara and N. Wada. 1995. KIH 2023 a new post emergence herbicide in rice (Oryza sativa). Proc. 15th Asian Pacific Weed Sci. Soc. Conf. Tsukuba, Japan, pp. 221-226
  14. Koo, S. J., S. C. Ann., J. S. Lim., S. H. Chae., J. S. Kim., J. H. Lee and J. H. Cho. 1997. Biological activity of the new herbicide LGC-40863 {benzophenone O-[2,6-bis[(4,6 dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime}. Pestic. Sci. 51:109-114 https://doi.org/10.1002/(SICI)1096-9063(199710)51:2<109::AID-PS585>3.0.CO;2-7
  15. Leafe, E. L. 1962. Metabolism and selectivity of plant growth regulator herbicides. Nature (London) 193:485-486 https://doi.org/10.1038/193485a0
  16. Lim, J. S., Y. T. Bae., J. H. Lee and S. J. Koo. 1997. Mode of acetolactate synthase inhibition and selectivity of the new herbicide pyribenzoxim. Weed Sci. Soc. Amer. Abs. 37:66
  17. McWhorter, C. G. 1992. The use of adjuvants. In : Adjuvant for herbicides (R. H. Hodgson ed.). Weed Sci. Soc. Amer. Champaign, IL, pp. 10-25
  18. Shimizu, T. 1997. Action mechanism of pyrimidinyl carboxy herbicides. J. Pestic. Sci. 22:254
  19. Shinohara, T., M. Yokoyama., O. Watanabe., K. Kawano and S. Shigematsu. 1994. KIH 2023, A new post emergence herbicide in rice. Proc. Weed Sci. Soc. Amer. p. 8
  20. Slife, F. W., J. L. Key., S. Yamaguchi and A. S. Crafts. 1962. Penetration, translocation, and metabolism of 2,4-D and 2,4,5-T in wild and cultivated cucumber plants. Weeds. 10:29-35 https://doi.org/10.2307/4040556
  21. Streibig, J. C. 1980. Models for curve fitting herbicide dose response data. Acta Agriculturae Scandinavica. 30:59-64 https://doi.org/10.1080/00015128009435696
  22. Tachikawa, S., T. Miyazawa and H. Sadohara. 1997. Vegetation management by KIH-2023 in rice levees and highways and railroad right-of-ways. Proc. 16th Asian Pacific Weed Sci. Soc. Conf. Kualalumpur, Malaysia, pp. 114-117
  23. Weimer, M. R., B. A. Swisher, and K. P. Vogel. 1988. Metabolism as a basis for differential atrazine tolerance in warm-season forage grasses. Weed Sci. 36:426-440
  24. Yokohama, M., O. Watanabe., K. Kawano., S. Shigematsu and N. Wada. 1993. KIH-2023, A new post-emergence herbicide in rice. Proc. Brighton Crop Protec. Conf. Brighton, UK, pp. 61-66
  25. Yun, M. S., Y. Yogo., R. Miura., Y. Yamasue and A. J. Fischer. 2005. Cytochrome P-450 monooxy-genase activity in herbicide-resistant and susceptible late watergrass (Echinochloa phyllopogon). Pestic. Biochem. Physiol. 83:107-114 https://doi.org/10.1016/j.pestbp.2005.04.002