A study on the Identification of Sources for Benzene Detected in the Casting Process

주조공정에서의 벤젠 발생원 규명에 관한 연구

  • Oh, Doe Suk (Institute of Occupational and Environmental Health, Korean Industrial Health Association) ;
  • Lee, Seong Min (Institute of Occupational and Environmental Health, Korean Industrial Health Association) ;
  • Lee, Byoung Jae (Center of Masan Occupational Health, Korean Industrial Health Association) ;
  • Kim, Young Ju (Center of Masan Occupational Health, Korean Industrial Health Association)
  • 오도석 (대한산업보건협회 산업보건환경연구원) ;
  • 이성민 (대한산업보건협회 산업보건환경연구원) ;
  • 이병재 (대한산업보건협회 마산산업보건센타) ;
  • 김영주 (대한산업보건협회 마산산업보건센타)
  • Received : 2005.07.01
  • Accepted : 2006.03.22
  • Published : 2006.03.31

Abstract

The aim of this study was to identify the sources of benzene detected in airborne of casting workplace where benzene was not used as raw material. We have identified benzene by GC/FID and GC/MSD. In this pilot test, small size iron chamber(diameter 30 cm, height 20 cm) was used. As the raw materials, new sand, recovered sand, and mixed casting sand(new sand + solidifying agent + organic resin + coating material) was tested, respectively. In the new sand benzene was not detected, but in the recovered sand and the mixed casting sand was detected. Xylenesulfonic acid(solidifying agent), one of the mixed casting sand ingredients was thought to product benzene by thermal decomposition above $400^{\circ}$..., but the other raw materials(organic resin and coating material) were thought not to product benzene. In this experiment, the most of benzene by thermal decomposition was produced within 1 hour after pouring the iron solution($1560^{\circ}$...) in small size iron chamber. When the mixed casting sand with coating material was used, the concentration of the produced benzene was average 2.91 ppm(range 1.98~3.72 ppm), and without coating material, benzene concentration was average 0.11 ppm(range 0.08~0.14 ppm).

Keywords

References

  1. 김강윤. 이동범. 하철주. 최호춘. 가스크로마토그래프를 이용한 기중 저농도 벤젠분석. 산업보건 2001. 1;41-50
  2. 김종부, 김경수, 김민철, 이선정, 정영보. 유기성 슬러지의 열분해에 따른 SOx와 NOx 발생량에 대한 평가. 대한환경공학회 추계학술연구발표회. 2003;1064-1065
  3. 방신호, 김광종, 염용태. 벤젠 노출 근로자의 생물학적 모니터링 지표로서의 뇨중 S-Phenylmercapturic Acid에 관한 연구. 한국산업위생학회지 1996;6(2):272-280
  4. 배기택, 문덕환, 김종한, 문찬석, 이채언. 톨루엔 크실렌 및 벤젠폭로의 생화학적지표들에 관한 연구. 대한산업의학회지 1991;3(2):165-176
  5. 배재근. 신편 폐기물처리공학 제3편 폐기물처리기술. 구미서관. 2005;390-399
  6. 송상환, 백남원, 하권철. 국내 일부 주유소 내에서의 휘발성 유기화합물 노출에 관한 연구. 한국산업위생학회지 2000;10(1):58-73
  7. 오도석, 이병재, 이성민, 김영주. 주조작업장 공기 중 벤젠의 정량. 한국산업위생학회지 2001;11(3):206-211
  8. 일본산업위생학회. 신판 산업보건 II. 산업보건의 작업별 매뉴얼 소화 60년(559-560쪽)
  9. 정규철. 산업중독편람. 신광출판사. 1995;95-97
  10. Dungan RS. Reeves Iii JB. Pyrolysis of Foundry Sand Resins : A Determination of Organic Products by Mass Spectrometry. Journal of Environmental Science and Health 2005;40;15
  11. Michalko PM. Aviation Adminisbation. Thermal Decomposition of Cyanate Ester Resin 200;1-12
  12. Federal Phillips JH. The removal of benzene impurity from carbon disulfide with a molecular sieve for industrial hygiene purposes. Am Ind Hyg Assoc J 1989;50:A514-A515
  13. SLOSS INDUSTRIES CORPORATION(SIC). Xylenesulfonic acid 94% MSDS. 2001;1-8